Details

Ujemanje vsote pik kock z enakomerno porazdelitvijo : delo diplomskega seminarja
ID Potokar, Anamarija (Author), ID Drnovšek, Roman (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (467,24 KB)
MD5: BC212E5C4CCDBE8812184288F5A5D9D3

Abstract
V diplomski nalogi obravnavamo problematiko porazdelitve vsote pik $n$ kock z $m$ stranicami in njeno približevanje enakomerni porazdelitvi. Najprej za primer dveh kock s šestimi stranicami s pomočjo rodovnih funkcij pokažemo, da enakomerna porazdelitev slučajne spremenljivke, ki predstavlja vsoto padlih pik, ni mogoča. Nato rezultat posplošimo na primer $n$ kock z $m$ stranicami, kjer dokaz z rodovnimi funkcijami odpove, zato do odgovora pridemo po drugi poti, preko izreka. V drugem delu naloge se ukvarjamo s tem, kako se enakomerni porazdelitvi vsote pik dveh kock z m stranicami karseda približamo z uporabo optimalnih kock, kjer ugotovimo, da sta optimalni kocki simetrični, a za $m > 2$ nista identični. Potem dokažemo, da je v teoretični situaciji, ko dopuščamo negativne verjetnosti, enakomerna porazdelitev vsote mogoča. Na koncu s pomočjo kode, implementirane v programskem jeziku Python, preverimo veljavnost izreka o optimalnih kockah, nato pa kodo uporabimo še za preizkušanje splošnih primerov za poljubna $n$ in $m$.

Language:Slovenian
Keywords:vsota pik kock, enakomerna porazdelitev, rodovna funkcija, optimalni kocki, simetrični kocki
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171535 This link opens in a new window
UDC:519.2
COBISS.SI-ID:246906883 This link opens in a new window
Publication date in RUL:28.08.2025
Views:283
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Matching dice sum to a uniform distribution
Abstract:
This thesis explores the problem of the distribution of the sum of $m$-sided dice, and how close this distribution can be to a uniform distribution. First, we show using generating functions that a uniform distribution of the random variable representing the sum of two six-sided dice is not possible. We then generalize the result to the case of $n$ dice with $m$ sides. Since the proof using generating functions fails in this case, we take a different approach via a theorem. In the second part of the thesis, we explore how to approximate the uniform distribution of the sum of two $m$-sided dice as closely as possible using optimal dice. We find that the optimal dice are symmetric, but for $m > 2$ they are not identical. We then prove that in a theoretical scenario where negative probabilities are allowed, a uniform distribution of the sum is possible. Finally, using Python code, we verify the validity of the theorem about two optimal dice, and then use the code to test general cases for arbitrary $n$ and $m$.

Keywords:sum of dice, uniform distribution, generating function, optimal dice, symmetric dice

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back