Details

Rekonstrukcija manjkajočih delov artefaktov
ID Menaše, Gal (Author), ID Solina, Franc (Mentor) More about this mentor... This link opens in a new window, ID Batagelj, Borut (Comentor)

.pdfPDF - Presentation file, Download (1,28 MB)
MD5: 6A796A49DF2D440A07D9D1A4598DEC42

Abstract
Magistrsko delo obravnava uporabo globokega učenja za rekonstrukcijo manjkajočih delov arheoloških artefaktov, s poudarkom na 2D slikah fresk in mozaikov. Tradicionalne restavratorske metode so dolgotrajne, drage in pogosto nereverzibilne, zato smo raziskali avtomatizirane pristope z uporabo umetne inteligence, natančneje modela Stable Diffusion XL (SDXL). Z uporabo tehnike LoRA smo model prilagodili specifičnemu slogu avtorja ali podobnih del in ga uporabili za rekonstrukcijo fresk iz cerkve Device Marije v Polju, Vile misterij v Pompejih, Frančiškanske cerkve v Ljubljani ter mozaika iz Mošenj. Učinkovitost rekonstrukcij smo ovrednotili s kvantitativnima metrikama SSIM in LPIPS ter kvalitativnimi ocenami strokovnjakov. Rezultati kažejo, da so rekonstrukcije vizualno prepričljive, vendar zahtevajo poglobljeno razumevanje ikonografije in konteksta za zagotavljanje zgodovinske natančnosti. Predlagani pristop predstavlja hitrejšo in cenovno ugodnejšo alternativo tradicionalnim metodam, a za etično in natančno restavriranje zahteva nadaljnje izboljšave, zlasti pri vključevanju ikonografskih referenc.

Language:Slovenian
Keywords:računalniški vid, globoko učenje, varstvo kulturne dediščine
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-171492 This link opens in a new window
COBISS.SI-ID:247600131 This link opens in a new window
Publication date in RUL:27.08.2025
Views:221
Downloads:46
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Reconstruction of missing parts of artifacts
Abstract:
This master's thesis explores the use of deep learning for the reconstruction of missing parts of archaeological artifacts, focusing on 2D images of frescoes and mosaics. Traditional restoration methods are time-consuming, costly, and often irreversible, prompting an investigation into automated approaches using artificial intelligence, specifically the Stable Diffusion XL (SDXL) model. The base model was fine-tuned using the LoRA technique to capture the style of the same artist or similar works and applied to case studies involving frescoes from the Church of the Virgin Mary in Polje, the Villa of the Mysteries in Pompeii, the Franciscan Church in Ljubljana, and a mosaic from Mošnje. The reconstructions were evaluated using quantitative metrics SSIM and LPIPS, as well as qualitative assessments by an expert. The results demonstrate that the reconstructions are visually compelling but require additional understanding of iconography and context to ensure historical accuracy. The proposed approach offers a faster and more cost-effective alternative to traditional methods, though it necessitates further improvements in incorporating iconographic references for ethical and precise restoration.

Keywords:computer vision, deep learning, cultural heritage

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back