Details

Numerična in eksperimentalna analiza vrtinčnega zračnega pršenja
ID Gruden, Andraž (Author), ID Šarler, Božidar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,30 MB)
MD5: 8D43227F9976A9F62BC2B50742D24327

Abstract
V magistrskem delu smo razvili tri-razsežni numerični model za analizo atomizacije nestisljive newtonske kapljevine z idealnim potisnim plinom s programom Ansys Fluent. Numerično reševanje temelji na metodi kontrolnih volumnov v treh dimenzijah z metodo volumna tekočine, ki vključuje geometrijsko rekonstrukcijo stične površine. Turbulenca je modelirana z modelom k-ω SST. Za primarni razpad kapelj je uporabljena Euler-Eulerjeva formulacija delcev. Posamezne kaplje po primarnem razpadu so pretvorjene v Euler-Lagrangeovo formulacijo diskretnih delcev. Sekundarni razpad je modeliran z uporabo modela razpada diskretnih delcev KHRT. Skonstruirana je bila eksperimentalna naprava, s katero smo izmerili kot pršenja za ureo s pretokom 0,0463 l/s in zrakom z nadtlakom 2 bar. Kot pršenja je bil določen iz posnetka pršenja z v ta namen razvito programsko kodo. Numerični model omogoči analizo veličin, ki se eksperimentalno težko določijo zaradi zapletene narave obravnavanega dvofaznega sistema. Izračunali smo hitrost toka, velikostno porazdelitev kapelj v osni in radialni smeri ter dolžino jedra uree. Izračunana velikost kapelj je bila primerjana s tehnično dokumentacijo šobe. Razviti numerični model ustrezno popiše kot pršenja in velikost kapelj, ki sta tehnološko najbolj pomembni veličini za proces selektivne ne-katalitične redukcije, kjer se uporabljajo tovrstni sistemi.

Language:Slovenian
Keywords:atomizacija, numerični modeli, kaplje, diskretni delci, selektivna ne-katalitična redukcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XXII, 83 str.
PID:20.500.12556/RUL-171414 This link opens in a new window
UDC:532.517:66.069.832:519.6(043.2)
COBISS.SI-ID:246928387 This link opens in a new window
Publication date in RUL:26.08.2025
Views:249
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Numerical and experimental analysis of swirling air blast atomisation
Abstract:
In this master's thesis, a three-dimensional numerical model was developed to analyse the atomisation of an incompressible Newtonian fluid with an ideal gas propellant with the Ansys Fluent software. The numerical solution is based on the finite volume method in three dimensions with the volume of fluid method, which includes geometric reconstruction of the contact surface. Turbulence is modelled using the k-ω SST model. The primary droplet breakup is modelled using the Euler-Euler formulation. After the primary breakup, individual droplets are transferred to the Euler-Lagrange discrete particle formulation. The secondary breakup is modelled using the KHRT discrete particle breakup model. An experimental apparatus was constructed to measure the spray angle of urea solution at a liquid flow rate of 0.0463 l/s and air at an overpressure of 2 bar. The spray angle was determined from the spray image using a program code developed for this purpose. The numerical model enables the analysis of quantities that are difficult to determine experimentally due to the complex nature of the two-phase system under consideration. We calculated the flow velocity, droplet size distribution in the axial and radial directions and the urea core length. The calculated droplet size was compared with the technical documentation of the nozzle. The developed numerical model adequately describes the spray angle and droplet size, which are the technologically most important quantities for the selective non-catalytic reduction process where such systems are used.

Keywords:atomisation, numerical models, droplets, discrete particles, selective non-catalytic reduction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back