Details

Opredelitev, kvantifikacija in analiza vplivov negotovosti značilk izmerjenih valov arterijskega tlaka pri projekciji na hemodinamski digitalni dvojnik
ID Gobec, Jan (Author), ID Milanič, Matija (Mentor) More about this mentor... This link opens in a new window, ID Kirn, Borut (Comentor)

.pdfPDF - Presentation file, Download (5,59 MB)
MD5: 70F5541E423980D67D2FE233E4D4F24F

Abstract
Spremljanje hemodinamičnih parametrov med anestezijo je ključno za ohranjanje stabilnosti pacienta. Ob pojavu intraoperativne hipotenzije (IOH) ima anesteziolog na voljo tri ukrepe: povečanje sistemske žilne upornosti, povečanje kontraktilnosti srca ali dodajanje volumna krvi, da ponovno vzpostavi arterijski krvni tlak (ABP) in srčni iztis. Izbira ukrepa je odvisna od ocene trenutnega stanja kardiovaskularnega sistema (CVS), ki pa pogosto temelji na izkušnjah in je lahko nespecifična. Cilj tega dela je preveriti, ali lahko računalniški model CVS podpre klinično odločanje. V magistrskem delu sem analiziral izmerjene ABP valovne oblike pri anesteziranih pacientih med abdominalno operacijo. Uporabil sem algoritem za segmentacijo signala na posamezne valove s pomočjo vsote naklonske funkcije (SSF), jih časovno normaliziral in izračunal 13 značilk vsakega vala. Razvil sem metriko za oceno napak in pri tem upošteval vpliv zaradi prenosa vala med centralnim in brahialnim ABP, merilne motnje (simuliran gausovski šum, špice, premiki) in merilno napako. Z uporabo CircAdapt modela sem simuliral valove za različna stanja CVS, definirana s primarnimi (žilna upornost, kontraktilnost in venska podajnost , posredno za volumen krvi) in sekundarnimi parametri (elastičnost arterij, srčni utrip,...). Na podlagi primerjave izmerjenih in simuliranih valov sem izračunal verjetnost ujemanja posameznega vala v parametričnem prostoru glede na toleranco napake značilk. Na koncu sem analiziral, kako velikost napake vpliva na obseg verjetnostnega volumna v prostoru in kako se težišče volumna pomika glede na čas intervencij. Tako sem pokazal, kako lahko kombinacija simulacij, statistične obdelave in kliničnih podatkov prispeva k boljši interpretaciji ABP valov v kontekstu ocene stanja CVS.

Language:Slovenian
Keywords:Arterijski krvni pritisk (ABP), vsota naklonske funkcije (SSF), parametrični prostor, značilke, segmentacija, CircAdapt, kardiovaskularni sistem (CVS)
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171291 This link opens in a new window
COBISS.SI-ID:247036675 This link opens in a new window
Publication date in RUL:22.08.2025
Views:157
Downloads:41
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Characterization, quantification, and impact of feature uncertainties in measured arterial pressure waves projected onto a hemodynamic digital twin
Abstract:
Monitoring hemodynamic parameters during anesthesia is essential for maintaining patient stability. In cases of intraoperative hypotension (IOH), an anesthesiologist can respond by increasing systemic vascular resistance, enhancing cardiac contractility, or adding blood volume to restore arterial blood pressure (ABP) and cardiac output. The choice depends on the estimated state of the cardiovascular system (CVS), which is often based on experience and can be non-specific. The goal of this thesis is to explore whether a computational CVS model can support clinical decision-making. In this work, I analyzed measured ABP waveforms from anesthetized patients undergoing abdominal surgery. I used a signal processing algorithm based on the slope sum function (SSF) to segment individual pulses, applied temporal normalization, and calculated 13 features for each wave. To estimate feature uncertainty a metric I developed, I considered the effect of the transfer between central and brachial ABP as well as signal distortions (simulated Gaussian noise, spikes, baseline shifts, and motion artifacts) and measuring error. Using the CircAdapt model, I obtained simulated ABP waves for various CVS conditions, defined by primary parameters (vascular resistance, contractility and complience of veins as proxy for blood volume) and secondary parameters (arterial elasticity, heart rate,...). By comparing measured and simulated waves, I computed the likelihood of each real waveform matching a specific point in the parametric space, accounting for feature uncertainty. Finally, I analyzed how feature uncertainty affects the size of the probable volume in parametric space and how the center of volume shifts over time in relation to intraoperative interventions. This study demonstrates how the integration of simulation, signal analysis, and clinical data can improve the interpretation of ABP waveforms and aid in assessing the physiological state of the CVS.

Keywords:Arterial Blood Pressure (ABP), Slope Sum Function (SSF), Parametric Space, Features, Segmentation, CircAdapt, Cardiovascular System (CVS)

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back