Details

Rekonstrukcija mezonov \( D^\pm \) in barionov \( \Lambda_c^\pm \) s pomočjo nevronskih mrež v eksperimentu ATLAS
ID Tomšič, Andraž (Author), ID Muškinja, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,69 MB)
MD5: 4CAC9257EC707C913386F6EE2BE26007

Abstract
V magistrskem delu analiziramo rekonstrukcijo mezonov \( D^\pm \) in barionov \( \Lambda_c^\pm \), nastalih iz procesa $W{+}c$, v eksperimentu ATLAS na trkalniku LHC pri energiji trkov \( \sqrt{s} = 13\,\mathrm{TeV} \). Osredotočamo se na razpada \( D^+ \to K^- \pi^+ \pi^+ \) in \( \Lambda_c^+ \to p K^- \pi^+ \), kjer uporabljamo metode strojnega učenja, zlasti večplastne nevronske mreže, za ločevanje signalnih dogodkov od kombinatoričnega ozadja. Prikazano je, da nevronske mreže omogočajo boljše ločevanje signala in ozadja v primerjavi s tradicionalnimi selekcijskimi metodami na podlagi rezov, zlasti pri rekonstrukciji \( D^+ \) mezonov. Analiza razkrije tudi izzive pri rekonstrukciji barionov \( \Lambda_c^+ \), kjer je zaradi krajše življenjske dobe in slabšega razmerja signala in ozadja ločevanje bistveno težje. Rezultati so pomembni za izboljšanje modeliranja hadronizacije kvarkov \( c \) v Monte Carlo simulacijah in za zmanjšanje sistematskih napak v prihodnjih analizah na LHC.

Language:Slovenian
Keywords:fizika osnovnih delcev, LHC, detektor ATLAS, kvark c, hadronizacija, strojno učenje, nevronske mreže
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171290 This link opens in a new window
COBISS.SI-ID:246961155 This link opens in a new window
Publication date in RUL:22.08.2025
Views:158
Downloads:47
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Reconstruction of $D^\pm$ Mesons and $\Lambda_c^\pm$ Baryons Using Neural Networks in the ATLAS Experiment
Abstract:
This master's thesis presents an analysis of the reconstruction of \( D^\pm \) mesons and \( \Lambda_c^\pm \) baryons, originating from the $W{+}c$ process, in the ATLAS experiment at the LHC collider, using data collected at a collision energy of \( \sqrt{s} = 13\,\mathrm{TeV} \). The study concentrates on the decays \( D^+ \to K^- \pi^+ \pi^+ \) and \( \Lambda_c^+ \to p K^- \pi^+ \), employing machine learning methods, specifically multilayer neural networks, to distinguish signal events from combinatorial background. The results demonstrate that neural networks provide better signal-background separation compared to traditional cut-based selection methods, especially for the reconstruction of \( D^+ \) mesons. The analysis also highlights the challenges in reconstructing \( \Lambda_c^+ \) baryons, where the shorter lifetime and lower signal-to-background ratio make separation significantly more difficult. These findings are important for improving the modeling of charm quark hadronization in Monte Carlo simulations and for reducing systematic uncertainties in future analyses at the LHC.

Keywords:elementary particle physics, LHC, ATLAS detector, charm quark, hadronization, machine learning, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back