Details

Ocena zooplanktonskega prispevka k biološki ogljični črpalki v globalnem oceanu s pomočjo razpadnih modelov in Lagrangeovega sledenja
ID Perharič Bailey, Črtomir Ernesto (Author), ID Ličer, Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Tinta, Tinkara (Comentor)

.pdfPDF - Presentation file, Download (29,44 MB)
MD5: B3CC8C8E938AE072C5C01BC3506EEC0F

Abstract
Želatinozni zooplankton (GZ) je po novejših raziskavah morda eden ključnih manjkajočih členov v procesu biološke ogljične črpalke v oceanih. To je proces absorpcije in vertikalnega prenosa atmosferskega ogljika v različne sloje oceana prek različnih poti. Uspešnost prenosa ogljika regulira svetovno ogljično bilanco in je med drugim pogojena z visoko hitrostjo tonjenja delcev organske snovi, ki zaznamuje ravno GZ. Poleg te, na uspešnost prenosa vplivajo še hitrost mikrobnega razpada, hitrost fragmentacije snovi, temperatura okoljske vode in drugo. V tem magistrskem delu prvič predlagamo in izpeljemo sklopljen model hitrosti tonjenja in razpada biomase GZ ob prisotnosti mikrobov. Poleg tega predlagamo še drugačen model mikrobnega razpada, pri katerem je sprememba biomase odvisna od površine GZ. Za oceno izvoza ogljika uporabimo najnovejše ocene njegove vsebnosti v biomasi GZ [1], mikrobni razpad GZ pa modeliramo z empiričnimi temperaturnimi odvisnostmi [2]. Za reševanje sklopljenih enačb tonjenja in razpada ustvarimo nov modul $\texttt{CarbonDrift}$ znotraj $\textit{python}$-ove knjižnice $\texttt{OpenDrift}$, ki je namenjena Lagrangeovemu sledenju delcev. Tako združimo vertikalno tonjenje z horizontalno advekcijo, za katero ugotovimo, da ne vpliva bistveno na prenos ogljika do različnih globin. Ocenimo, da med (3.83 - 4.50)PgCY$^{-1}$ ogljika shranjenega v biomasi GZ potone do 100 m, med (1.53-2.20)PgCY$^{-1}$ do 1000 m in med (0.77-1.53)PgCY$^{-1}$ do morskega dna, odvisno od uporabljenega modela. Te vrednosti predstavljajo med (38-45)% ocene globalne vrednosti prenosa partikulatnega ogljika (POC, ang. $\textit{particulate organic carbon}$) do 100 m in med (39-77)% globalnega prenosa POC na dno. Nato enačbe rešimo še v drugačnih temperaturnih poljih (TP) in sicer v globalnem TP med nekaj trenutno zabeleženimi morskimi vročinskimi valovi (MHW) in v projekcijskih TP ob koncu 21. stoletja. V obeh primerih se zaradi višjih temperatur hitrost razpada biomase poveča in je posledično tonjenje počasnejše. Na območju MHW se vertikalni prenos zmanjša do dobrih 10%, kar se na globalni ravni zaradi omejene površine MHW pozna kvečjemu do 5%. Ob koncu 21. stoletja pa se po napovedi teh modelov prenos ogljika globalno zmanjša do 20%.

Language:Slovenian
Keywords:Želatinozni zooplankton, Biološka ogljična črpalka, Lagrangeovo modeliranje, Podnebne spremembe, Morski vročinski valovi
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171220 This link opens in a new window
COBISS.SI-ID:246928643 This link opens in a new window
Publication date in RUL:20.08.2025
Views:197
Downloads:52
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Global ocean estimates of zooplankton contribution to the biological carbon pump using decay models and Lagrangian tracking
Abstract:
Biological carbon pump is the process of converting and exporting atmospheric carbon to different oceanic depths via different pathways. Its efficiency is a function of vertical velocity, biomass decay rate, fragmentation rate, ocean temperature and others. Recently, gelatinous zooplankton (GZ) has been proposed as one of the potential missing links to the global carbon export due to its fast sinking speed. In this study we refine the current work on GZ with a physical model for the mass dependent vertical sinking velocity. We therefore construct a coupled model between sinking and microbial decay of GZ. Furthermore, we propose a possible improvement in microbial decay modeling, where the GZ biomass rate is a function of its area rather than mass. We solve these models inside our newly developed $\textit{python}$ environment $\texttt{CarbonDrift}$, which is an extension of the Lagrangian tracking library $\texttt{OpenDrift}$. Using initial mass data from Ref. [1] and decay rate to temperature dependencies from Ref. [2], we re-estimate global GZ biomass export to be between (3.83 - 4.50)PgCY$^{-1}$, (1.53 - 2.20)PgCY$^{-1}$ and (0.77-1.53)PgCY$^{-1}$ at depths of 100 m, 1000 m and at the seafloor, respectively. The former represents (38-45)%, while the latter represents (39-77)% of global particulate carbon (POC) export estimates. Furthermore, we find, that the additional consideration of horizontal advection does not visibly change the mass estimates. Lastly, we discuss the effects of different temperature fields on the model outcome. We find that marine heatwaves accelerate GZ decay and subsequently slow their sinking velocity, which leads to an inhibition of carbon export of up to some 10% locally. This difference, however, can reduce the global carbon export only up to 5%. In contrast, model projections at the end of the 21$^{\mathrm{st}}$ century suggest a major decrease in carbon export of up to 20% globally.

Keywords:Gelatinous zooplankton, Biological carbon pump, Lagrangian modeling, Climate change, Marine heatwaves

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back