Details

Napovedovanje proizvodnje električne energije v vetrnih elektrarnah na osnovi nevronskih mrež
ID Kirar, Aljaž (Author), ID Čepon, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,59 MB)
MD5: 7CFBC2C1E8C8183EA5356182585C22D5

Abstract
Obnovljivi viri energije zavzemajo vse pomembnejši delež v elektroenergetskem sistemu, kar povečuje potrebo po zanesljivem napovedovanju njihove proizvodnje. V diplomskem delu smo se osredotočili na razvoj modela za napovedovanje proizvodnje električne energije vetrnega polja. Zanesljive napovedi so namreč ključnega pomena za učinkovito načrtovanje obratovanja elektrarn, optimizacijo proizvodnih zmogljivosti ter uravnoteženje elektroenergetskega sistema. V tej nalogi je prikazan razvoj modela, ki je na podlagi zgodovinskih podatkov o proizvodnji električne energije in vremenskih razmerah sposoben napovedovati prihodnjo proizvodnjo iz vetrnih virov. Posebna pozornost je namenjena pripravi in obdelavi podatkovne zbirke, saj kakovost vhodnih podatkov pomembno vpliva na učinkovitost napovednega modela. Učna množica temelji na prosto dostopnih arhivih vremenskih podatkov in izmerjeni električni moči, ki jo je vetrno polje oddajalo v omrežje. Modeli so razviti v programskem jeziku Python, pri čemer je uporabljena odprtokodna knjižnica TensorFlow, ki omogoča gradnjo in učenje kompleksnih nevronskih mrež. Na osnovi izsledkov naloge je razvidno, da zaradi kompleksnosti vremenskih vzorcev najprimernejši napovedni model temelji na nevronski mreži.

Language:Slovenian
Keywords:vetrne elektrarne, nevronske mreže, linearna regresija, napovedovanje, značilke
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XI, 32 f.
PID:20.500.12556/RUL-170968 This link opens in a new window
UDC:621.311.245:004.032.26(043.2)
COBISS.SI-ID:244620035 This link opens in a new window
Publication date in RUL:24.07.2025
Views:205
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Application of Neural Networks for Predicting Wind Farm Energy Generation
Abstract:
Renewable energy sources are taking on an increasingly important role in the power system, which raises the need for reliable forecasting of their production. This thesis focuses on the development of a model for forecasting electricity generation from a wind farm. Reliable forecasts are crucial for effective power plant operation planning, optimization of production capacities, and balancing the power system. This work presents the development of a model capable of forecasting future wind power generation based on historical electricity production data and weather conditions. Special attention is given to the preparation and processing of the dataset, as the quality of input data significantly affects the performance of the forecasting model. The training dataset was based on publicly available archives of weather data and the measured electrical power output delivered by the wind farm to the grid. The models were developed in the Python programming language, using the open-source TensorFlow library, which enables the construction and training of complex neural networks.Based on the findings of the thesis, it is evident that, due to the complexity of weather patterns, the most suitable forecasting model is based on a neural network.

Keywords:wind farm, neural networks, forecasting, linear regression, features

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back