Details

Stabilna difuzija za poravnavo zgornjega dela oblačila s telesno držo človeka
ID Kejžar, Lana (Author), ID Šajn, Luka (Mentor) More about this mentor... This link opens in a new window, ID Lampe, Ajda (Comentor)

.pdfPDF - Presentation file, Download (14,51 MB)
MD5: 1EBD87E1B0EC733EA3E05D03CE0FE0F2

Abstract
V diplomski nalogi so raziskane možnosti uporabe stabilne difuzije za prilagajanje zgornjih delov oblačil telesni drži človeka. Cilj je naučiti prednaučeni difuzijski model, ki na podlagi vhodne slike majice in človeške drže prilagodi oblačilo, da se prilega telesu. Kot vhodni podatek je uporabljena znana podatkovna zbirka VITON-HD, na podlagi katere so ustvarjene štiri različice modela, naučene na različnih velikostih slik in tipih telesnih drž. V učno množico so vključene tudi ciljne slike, ustvarjene s pomočjo Segment Anything Modela (SAM). Na koncu sta izvedeni kvalitativna in kvantitativna analiza rezultatov, pri čemer so uporabljene mere, kot so CLIP-IQA, CLIP Score, FID in KID. Rezultati pokažejo, da vsi štirje modeli uspešno ukrivijo začetna oblačila in jih prilagodijo osebi, po drugi strani pa slabše ohranijo lastnosti oblačila samega.

Language:Slovenian
Keywords:virtualno pomerjanje, difuzijski modeli, stabilna difuzija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-170953 This link opens in a new window
COBISS.SI-ID:244011523 This link opens in a new window
Publication date in RUL:23.07.2025
Views:271
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stable Diffusion for Aligning Upper-Body Garments with Human Pose
Abstract:
This thesis investigates the application of StableDiffusion model for adapting upper-body garments to the human body posture. The objective is to fine-tune a pretrained diffusion model that, given an input image of a shirt and a human pose, adjusts the garment to fit the body shape. The publicly available VITON-HD dataset is used as the primary data source, based on which four different models are trained, varying in image resolution and types of body poses. The training set also includes target images generated using the Segment Anything Model (SAM). Both qualitative and quantitative evaluations of the results are conducted, employing metrics such as \mbox{CLIP-IQA}, CLIP Score, FID, and KID. The findings demonstrate that all four models successfully deform the original garments to conform to the human body, although they show limitations in preserving the garment’s original characteristics.

Keywords:virtual try-on, diffusion models, stable diffusion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back