Details

Implementacija priporočilnega sistema v PostgreSQL
ID Grula, Vito (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (364,70 KB)
MD5: 8155B34A8A1B0165FF3E0EC31D27ABD0

Abstract
Priporočanje novih izdelkov je eden izmed osnovnih načinov izboljšanja nakupovalne izkušnje uporabnika. To nam omogočajo sistemi za priporočanje, ki si prizadevajo določiti čim bolj natančno oceno nekemu izdelku in nato najbolje ocenjene izdelke predstaviti uporabniku. Poznamo več vrst priporočilnih sistemov oziroma algoritmov, ki računajo ocene. V diplomski nalogi se osredotočamo na priporočanje s sodelovanjem in implementacijo treh sistemov za priporočanje v odprtokodni relacijski bazi PostgreSQL. Ideja za takšno implementacijo izhaja iz praktične potrebe, da bi priporočanje izvajali neposredno v relacijski bazi, kjer so podatki shranjeni. Na ta način se izognemo dodatnemu prenosu podatkov in izkoristimo zmogljivosti SQL ter prednosti, ki jih ponuja relacijska baza. Predstavljen je potek učinkovite implementacije takega sistema v PL/pgSQL jeziku ter opisane prednosti in slabosti takšne implementacije. Sisteme smo testirali na podlagi zbirke podatkov MovieLens ter jih primerjali z orodjem Surprise (programski jezik Python) ter že obstoječo rešitvijo RecDB, zgrajeno znotraj same relacijske baze PostgreSQL. Na koncu so predstavljene ključne ugotovitve primerjave sistemov, skupaj z njihovimi omejitvami in možnimi smernicami za nadaljnje delo in izboljšave.

Language:Slovenian
Keywords:priporočilni sistem, algoritem, ocena, PostgreSQL
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-170764 This link opens in a new window
COBISS.SI-ID:243968259 This link opens in a new window
Publication date in RUL:15.07.2025
Views:253
Downloads:65
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of a recommender system in PostgreSQL
Abstract:
Recommending new products is one of the fundamental ways to enhance the shopping experience for users. This is facilitated by recommendation systems, which aim to determine the most accurate rating for an item and then present the highest-rated items to the user. There are various types of recommendation systems or algorithms that calculate ratings. This thesis focuses on collaborative filtering and the implementation of three recommendation systems in the open-source relational database PostgreSQL. The idea behind this approach comes from the practical need to run recommendations directly in the relational database where the data is stored. This avoids extra data transfer and makes use of PostgreSQL’s built-in SQL features and optimizations. The efficient implementation process of such a system in the PL/pgSQL language is presented, along with the advantages and disadvantages of this implementation. The systems were tested using the MovieLens dataset and compared with the Surprise tool (Python programming language) and the existing RecDB solution built within the PostgreSQL relational database. At the end, the key findings of the system comparison are presented, along with possible directions for future work and improvements.

Keywords:recommender system, algorithm, rating, PostgreSQL

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back