Details

Deidentifikacija obraznih slik na podlagi globinskih podatkov
ID ROM, MATEVŽ (Author), ID Meden, Blaž (Mentor) More about this mentor... This link opens in a new window, ID Emeršič, Žiga (Comentor)

.pdfPDF - Presentation file, Download (22,74 MB)
MD5: 89FBEEC50173C72A6E467D751AD7BB39

Abstract
V zaključni nalogi so predstavljene pogoste metode deidentifikacije, katerih namen je zaščita identitete. Cilj naloge je zasnova deidentifikacijskega postopka za deidentifikacijo identitete s preprocesiranjem slik in uporabo obstoječih konceptov anonimnosti, globinskih slik in latentnih difuzijskih modelov. V delu najprej naredimo pregled stanja in predstavimo nekaj podobnih pristopov deidentifikacije. Sledi predstavitev konceptov, uporabljenih pri naši implementaciji deidentifikacije, podatkovnih baz slik ter metod za evalvacijo rezultatov. Uspešnost deidentifikacije prikažemo s pomočjo mere AUC, pri čemer najboljši rezultat doseže vrednost 0, 75. Dodatno primerjamo ohranjenost drugih lastnosti, kot so izraz, spol in etnična pripadnost. Rezultate smo dodatno ocenili z uporabo mere EER, pri čemer naš model dosega konkurenčne vrednosti v primerjavi z obstoječimi pristopi, kot sta LDFA in FAMS. Na različnih podatkovnih bazah, kot so RaFD, CelebA-HQ in XM2VTS, je naš model dosegel EER med 19, 91% in 31, 28%, kar kaže na dobro ravnovesje med zaščito identitete in ohranjanjem uporabnih informacij. Ti rezultati potrjujejo, da naš pristop zmanjšuje prepoznavnost, hkrati pa ohranja kakovost deidentificiranih slik.

Language:Slovenian
Keywords:deidentifikacija, latentni difuzijski modeli, globinske slike, računalniški vid, slikovna biometrija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-170737 This link opens in a new window
COBISS.SI-ID:243783427 This link opens in a new window
Publication date in RUL:14.07.2025
Views:246
Downloads:103
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deidentification of facial images based on depth data
Abstract:
In the final thesis, common deidentification methods are presented with the goal of concealing identity. The aim is to design a deidentification process through image preprocessing and the use of existing concepts of anonymity, depth images, and latent diffusion models. The paper first reviews the state of the art and presents several related approaches. It then introduces the concepts used in our implementation, the image datasets employed, and the evaluation methods. Using the AUC metric, where our best result reaches a value of 0.75, we demonstrate the success of deidentification. We also compare the preservation of other attributes, such as facial expression, gender, and ethnicity. Additionally, we evaluate results using the Equal Error Rate (EER), where our model achieves competitive values compared to established methods such as LDFA and FAMS. Across different datasets—including RaFD, CelebA-HQ, and XM2VTS—our model achieves EER scores ranging from 19.91% to 31.28%, demonstrating a strong balance between identity protection and image utility. These results confirm that our approach effectively reduces recognizability while preserving image quality.

Keywords:deidentification, latent diffusion models, depth images, computer vision, image biometrics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back