Details

Modeliranje lastnosti proteinov s površinskimi deskriptorji
ID Erzin, Lara (Author), ID Ravnik, Miha (Mentor) More about this mentor... This link opens in a new window, ID Kuzman, Drago (Comentor)

.pdfPDF - Presentation file, Download (6,16 MB)
MD5: 2B066FD24BA0E6282DC3AB3F4978F5EF

Abstract
Proteini uravnavajo številne biološke procese, pri čemer njihove fizikalno-kemijske lastnosti določajo njihovo stabilnost, strukturno fleksibilnost in interakcije z drugimi molekulami. Za formulacije s terapevtskimi proteini, kot so monoklonska protitelesa, je zato nujno testirati kemično degradacijo in agregacijo učinkovine, saj ti pojavi vplivajo na varnost in učinkovitost zdravila. Za začetek kliničnih testiranj je kritična tudi začetna ocena doze, ki pa je močno odvisna od biološke razpoložljivosti zdravila. Vedno pomembnejši postajajo pristopi, ki bi že v fazi oblikovanja molekule omogočili zanesljivo napoved, ali bo določeno monoklonsko protitelo primerno za nadaljnjo uporabo. V magistrski nalogi raziskujemo možnost uporabe matematično-fizikalnega modeliranja v kombinaciji z eksperimenti za napovedi lastnosti proteinov, specifično monoklonskih protiteles, s pomočjo površinskih deskriptorjev. Za ta namen smo uporabili program AlphaFold za napovedovanje proteinskih struktur in simulacije molekularne dinamike za analizo njihovih površinskih lastnosti. Izračunali smo različne deskriptorje, kot sta SASA (angl. 'solvent accessible surface area'), SCM (angl. 'spatial charge map') in drugi, ter jih uporabili pri modeliranju biološke razpoložljivosti. Kljub sistematičnemu pristopu in širokemu naboru deskriptorjev so rezultati pokazali, da izbrani parametri niso zadostni za zanesljivo napoved biološke razpoložljivosti, kar poudarja zapletenost tega pojava in potrebo po nadaljnjem razvoju metodologije. Kot primer uspešne uporabe površinskih deskriptorjev pri napovedi lastnosti proteinov pa predstavljamo tudi uspešno napoved agregacije proteinov na podlagi njihovih površinskih lastnosti. Naši rezultati izpostavljajo omejitve izbranega pristopa ter odpirajo nova raziskovalna vprašanja o izboljšanju napovednih modelov za razumevanje lastnosti proteinov.

Language:Slovenian
Keywords:proteini, matematično-fizikalno modeliranje, biološka razpoložljivost, monoklonska protitelesa, površinski deskriptorji, AlphaFold, molekularna dinamika, agregacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-170541 This link opens in a new window
COBISS.SI-ID:241979139 This link opens in a new window
Publication date in RUL:09.07.2025
Views:249
Downloads:91
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modelling of protein properties with surface descriptors
Abstract:
Proteins regulate numerous biological processes, and their physicochemical properties determine their stability, structural flexibility, and interactions with other molecules. For formulations containing therapeutic proteins such as monoclonal antibodies, it is therefore essential to test chemical degradation and aggregation of the active substance, since these phenomena affect the drug’s safety and efficacy. A critical factor for initiating clinical trials is also the initial dose estimate, which is strongly dependent on the drug’s bioavailability. Approaches which would be capable of reliably predicting whether a given monoclonal antibody will be suitable for further development already at the molecule-design stage are becoming increasingly important. In this master's thesis, we investigate the use of mathematical–physical modelling in combination with experiments to predict protein properties, specifically those of monoclonal antibodies, using surface descriptors. To achieve this, we employed AlphaFold for protein structure prediction and molecular dynamics simulations to analyze their surface properties. Various descriptors, including SASA (solvent accessible surface area), SCM (spatial charge map), and others, were calculated and used in modeling bioavailability. Despite a systematic approach and a broad set of descriptors, results indicate that the selected parameters are insufficient for reliably predicting bioavailability, highlighting the complexity of the processes involved and the need for further methodological improvements. As an example of a successful application of surface descriptors for protein property prediction, we also present an accurate prediction of protein aggregation. Our findings emphasize the limitations of our chosen approach and raise new research questions about improving predictive models for understanding protein properties.

Keywords:proteins, mathematical–physical modelling, bioavailability, monoclonal antibodies, surface descriptors, AlphaFold, molecular dynamics, aggregation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back