Details

Analiza rokometnih sedemmetrovk s strojnim učenjem
ID Košir, Domen (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,78 MB)
MD5: 25A9142D84F43F41F83448F42DD095ED

Abstract
V diplomski nalogi smo raziskovali, kaj vpliva na uspešnost rokometnih sedemmetrovk. Analizirali smo vpliv različnih dejavnikov, kot so igralni položaj, strelna roka, ciljna lokacija, število nakazovanj in fizična zgradba vratarja. Za analizo smo uporabili napredne tehnologije, kot sta MediaPipe in model YOLO. MediaPipe je omogočil natančno zaznavanje ključnih telesnih točk izvajalcev, YOLO pa je omogočil zaznavanje žoge v prostoru. Z analizo lastih videoposnetkov smo pridobili rezultate, ki smo jih nato primerjali z obstoječo statistiko in raziskavami. Na osnovi teh primerjav smo ugotovili, kateri dejavniki ključno prispevajo k uspešnosti sedemmetrovk. Rezultati naše raziskave izboljšajo razumevanje sedemmetrovk tako pri igralcih kot pri trenerjih in prispevajo k večji uspešnosti pri tem segmentu rokometne igre.

Language:Slovenian
Keywords:rokomet, sedemmetrovke, analiza, strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-170336 This link opens in a new window
COBISS.SI-ID:241396483 This link opens in a new window
Publication date in RUL:03.07.2025
Views:248
Downloads:38
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine learning analysis of handball seven-metre shots
Abstract:
In this thesis, we investigated the factors that influence the success of seven-meter throws in handball. We analyzed the impact of various factors, such as player position, shooting hand, target location, number of feints, and the goalkeeper's physical build. For the analysis, we used advanced technologies such as MediaPipe and the YOLO model. MediaPipe enabled precise detection of key body points of the players, while YOLO allowed for the detection of the ball in space. By analyzing our own video footage, we obtained results, which we then compared with existing statistics and research. Based on these comparisons, we identified the key factors that contribute to the success of seven-meter throws. The results of our research enhance the understanding of seven-meter throws for both players and coaches, contributing to greater success in this segment of handball gameplay.

Keywords:handball, seven-meter throws, analysis, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back