Details

Analiza in optimizacija modelov za samodejno razpoznavanje obrazov na podlagi vizualizacije značilk
ID Pistotnik, Rok (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (14,81 MB)
MD5: DCF802D08F20D32D1C189C6130F2FCC9

Abstract
V diplomskem delu predstavimo metode za zmanjšanje vpliva nerelevantnih obraznih karakteristik na biometričnem razpoznavanju obrazov ter s tem povečamo zanesljivost verifikacije pri spremembah osvetlitve in orientacije obraza. Vsako sliko najprej predstavimo v večdimenzionalnem prostoru identitet, nato pa z analizo centroidov poiščemo smeri, ki opisujejo variacije identitetnih lastnosti. S temi smermi kvantificiramo izraženost neželenih obraznih karakteristik z globalnim povprečjem ter jih nato eliminiramo z več izpeljanimi metodami. Predlagane pristope ovrednotimo na sodobnih modelih za verifikacijo obrazov z različnimi modeli, kot so ArcFace, CosFace, AdaFace in SwinFace. Za naše eksperimente smo uporabili dva podatkovna nabora, MultiPIE in CPLFW. Mera za učinkovitost so bile operacijske točke na ROC-krivuljah. Rezultati potrjujejo, da metode izboljšajo verifikacijsko natančnost, pri čemer se nobena ne izkaže kot univerzalno najboljša za vse arhitekture. Pristopa eliminacije obraznih karakteristik vložitve, ki sta se izakazala za najblj učinkovita, je transformacija vhodne vložitve na način, ki zagotavlja, da testna in prototipna vložitev kodirata enake obrazne karakteristike (npr. obraze pod enakimi zornimi koti) in izračun povprečja preko vseh razredov obraznih karakteristik. Možnosti za nadaljnji razvoj vključujejo opisovanje smeri sprememb obrazne karakteristike s funkcijami, izbiro specifičnih smeri sprememb glede na arhitekturo modelov, izbor ustreznejšega nabora podatkov ter vključitev več obraznih karakteristik hkrati pri določanju smeri sprememb.

Language:Slovenian
Keywords:biometrično razpoznavanje obrazov, globoke nevronske mreže, izločanje nerelevantnih lastnosti, DFD, ArcFace, CosFace, AdaFace, SwinFace
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-170309 This link opens in a new window
COBISS.SI-ID:242799875 This link opens in a new window
Publication date in RUL:03.07.2025
Views:283
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis and optimization of automatic face recognition models based on feature vizualization
Abstract:
We present methods that reduce the influence of non-relevant facial attributes on the performance of biometric face recognition systems, thereby boosting verification reliability under changes in illumination and head pose. With our approach, each image is first embedded in a high-dimensional identity space; by analysing class centroids we then identify directions that capture variations of identity-irrelevant properties. These directions are used to quantify the strength of unwanted facial attribute and several methods are designed to then eliminate the information associated with these attributes from the facial embeddings. The proposed approaches are evaluated on state-of-the-art verification models with diverse models—ArcFace, CosFace, AdaFace and SwinFace—using two datasets, MultiPIE and CPLFW. Performance is measured at key operating points on ROC curves. Results confirm that the methods improve verification accuracy, although none is universally optimal across all architectures. The two most promising strategies are equalising an attribute by shifting the test embedding toward the expression level of a prototype embedding, and averaging across all attribute classes. Future work could model attribute-change directions with dedicated functions, select architecture-specific directions, adopt a more suitable dataset, and incorporate multiple facial attributes simultaneously when defining change directions.

Keywords:biometric face recognition, deep neural networks, irrelevant-attribute suppression, DFD, ArcFace, CosFace, AdaFace, SwinFace

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back