Details

Generiranje sintetičnih obrazov z difuzijskimi modeli
ID SABADIN, JERNEJ (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window, ID Tomašević, Darian (Comentor)

.pdfPDF - Presentation file, Download (21,23 MB)
MD5: D8F1A8A88922AB884417B34F244DD461

Abstract
Učinkovito učenje modelov za razpoznavanje obrazov (ang. Face Recognition, FR) zahteva obsežne podatkovne zbirke, natančno označene z identitetami oseb. Pridobivanje takšnih zbirk je časovno zelo potratno. Poleg tega je njihova uporaba pogosto omejena zaradi zahtev po varstvu zasebnosti. Zaradi tega v sklopu magistrskega dela predstavimo nov generativni difuzijski model IDSync. Gre za nadgradnjo metode Arc2Face, ki omogoča generiranje obraznih slik visoke kakovosti. IDSync z dodatno klasifikacijsko kriterijsko funkcijo in prilagojenim učnim postopkom ohranja izvorno identiteto posameznikov ter zagotavlja vizualno prepričljive sintetične obraze. Nabor sintetičnih slik obrazov, ustvarjen z generativnim modelom, ocenjujemo z različnimi metrikami: kosinusno medrazredno in znotrajrazredno podobnostjo izlušenih značilk, porazdelitvijo kotov usmerjenosti obrazov, Fréchetovo razdaljo med značilkami sintetičnih in realnih primerov ter drugimi statističnimi merami. Glavni pokazatelj kakovosti umetno ustvarjenega nabora podatkov je, kako dobro se model za razpoznavanje obrazov na njem nauči. To merimo z verifikacijsko natančnostjo na standardnih testnih zbirkah za oceno FR-modelov. Rezultati kažejo, da so podatki, generirani z metodo IDSync, primernejši za učenje modelov za razpoznavanje obrazov kot podatki, ustvarjeni z metodo Arc2Face, kar dodatno potrjujejo omenjene metrike. Zaradi spodbudnih izsledkov razširimo učenje z metodo IDSync na večjo količino učnih podatkov in predstavimo pridobljene rezultate. Naloga vključuje občutljivostno analizo hiperparametrov za poglobljen vpogled v vpliv dodatne kriterijske funkcije ter ablacijsko študijo.

Language:Slovenian
Keywords:IDSync, sintetični obrazi, difuzijski modeli, razpoznavanje obrazov, klasifikacijska kriterijska funkcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-170308 This link opens in a new window
COBISS.SI-ID:242073859 This link opens in a new window
Publication date in RUL:03.07.2025
Views:382
Downloads:122
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Synthetic Face Generation Using Diffusion Models
Abstract:
Effective training of face recognition (FR) models requires large, meticulously labeled datasets of facial identities. Acquiring such datasets is time-consuming, and their use is often constrained by privacy concerns. For this reason, as part of the master's thesis, we introduce a new generative diffusion model called IDSync. This model extends Arc2Face and can produce high-quality synthetic facial images. By incorporating an additional classification loss and a customized training procedure, IDSync preserves individuals’ original identities while ensuring visually convincing outputs. We evaluate the synthetic face image set generated by our model using multiple metrics: inter-class and intra-class cosine similarity of extracted features, the angular distribution of facial embeddings, the Fréchet distance between synthetic and real feature distributions, and other statistical measures. The primary indicator of dataset quality is the verification accuracy of an FR model trained on these synthetic images, measured on standard FR benchmarks. Our results show that data generated by IDSync is more suitable for training FR models than data produced by Arc2Face, as confirmed by the above metrics. Motivated by these promising findings, we further scale up IDSync training to a larger set of images and report the resulting performance improvements. The thesis also includes a sensitivity analysis of hyperparameters and an ablation study to provide deeper insights into the impact of the additional loss function.

Keywords:IDSync, synthetic faces, diffusion models, face recognition, classification loss function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back