Details

Origami konstrukcije in reševanje problemov s prepogibanjem papirja : magistrsko delo
ID Krečič, Terezija (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,74 MB)
MD5: D62C4F5E4B4C80E92295C6CD8A023E7C

Abstract
Prepogibanje papirja je v zadnjih petdesetih letih dobilo veliko vrednost v znanosti. Z ravnimi in enkratnimi prepogibi ter z njihovimi presečišči so določene premice in točke v modelu evklidske ravnine, vendar origamija ne povezujemo le z običajno evklidsko geometrijo. Z njim rešujemo različne probleme, ki izhajajo tudi iz področja algebre, teorije števil, projektivne geometrije, analize in še mnogo drugih. V nalogi bomo definirali množico origami števil in konstrukcije, ki jih lahko opravljamo s prepogibanjem papirja. Pogledali si bomo, kako lahko z origamijem rešujemo predvsem probleme, ki jih z evklidskim orodjem ne moremo, pri čemer je v ospredju vprašanje konstrukcije pravilnega sedemkotnika, trisekcije kota in konstrukcije razdalje $\sqrt[3]{2}$. Spoznali bomo Hagove izreke, prepogibali tangente na stožnice, reševali enačbe tretje in četrte stopnje, na koncu pa še iz več zornih kotov spoznali optični Alhazenov problem in origami konstrukcijo njegove rešitve s pomočjo dualnih stožnic.

Language:Slovenian
Keywords:Prepogibanje papirja, origami operacije, Belochin pregib, origami konstrukcije, origami števila, Hagovi izreki, trisekcija kota, podvojitev kocke, prepogibanje tangent na stožnice, Lillova metoda, reševanje enačb, dualne stožnice, Alhazenov problem.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-169367 This link opens in a new window
UDC:514
COBISS.SI-ID:237012995 This link opens in a new window
Publication date in RUL:25.05.2025
Views:347
Downloads:69
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Origami constructions and problem solving by paper-folding
Abstract:
Paper folding has gained significant value in science over the last fifty years. With straight and single folds and their intersections, lines and points in the model of the Euclidean plane are defined, but origami is not only associated with conventional Euclidean geometry. It helps us solve various problems that stem also from areas like algebra, number theory, projective geometry, analysis, and many others. In this paper, we will define the set of origami numbers and constructions that can be performed through paper folding. We will examine how origami can help solve problems where Euclidean tools are powerless, focusing particularly on the question of construction of regular heptagon, angle trisection and the construction of the distance $\sqrt[3]{2}$. We will get to know Haga's theorems, fold tangents to conics, solve cubic and quartic equations, and finally, from various perspectives, learn about Alhazen's optical problem and the origami construction of its solution with help of dual conics.

Keywords:Paper folding, origami operations, Beloch's fold, origami constructions, origami numbers, Haga's theorems, angle trisection, doubling the cube, folding tangents to conics, Lill's method, equation solving, dual conics, Alhazen's problem.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back