Details

Modeliranje in klasifikacija časovnih vrst satelitskih posnetkov s strojnim učenjem : doktorska disertacija
ID Račič, Matej (Author), ID Oštir, Krištof (Mentor) More about this mentor... This link opens in a new window, ID Čehovin Zajc, Luka (Comentor), ID Grigillo, Dejan (Member of the commission for defense), ID Kokalj, Žiga (Member of the commission for defense), ID Bosnić, Zoran (Member of the commission for defense)

.pdfPDF - Presentation file, Download (14,88 MB)
MD5: E345AFDE1554CE4E3F1A7573F522AAEC

Abstract
Časovne vrste satelitskih posnetkov (ang. Satellite Image Time Series SITS) so ključnega pomena za spremljanje dinamike vegetacije in sprememb pokrovnosti. V okviru doktorske raziskave smo obravnavali različne vidike priprave in analize SITS z nalogo klasifikacije travnikov in kmetijskih kultur. Raziskali smo optimalno gostoto SITS za klasifikacijo travnikov in ugotovili, da tri do štiri opazovanja na mesec zadostujejo za doseganje rezultatov, ki se za manj kot 0,05 razlikujejo v meri F1 od tistih, pridobljenih z uporabo polnih (brezoblačnih) SITS. Preučili smo možnost zgodnje klasifikacije kmetijskih kultur različnih let z uporabo prenosa znanja. Modeli, učeni le na izvornih (ang. source) letih, so v povprečju na ciljnih (ang. target) letih dosegli mero F1 0,825 (mejna vrednost). Z uporabo prenosa znanja smo mejno vrednost F1 presegli z uporabo 48.000 učnih primerov (6 % razpoložljivih referenčnih podatkov) iz ciljnega leta že v sredini julija. Predstavili smo nov radarsko optični vegetacijski indeks (ROVI), ki združuje normiran diferencialni vegetacijski indeks (NDVI) in radarsko koherenco ter omogoča ustvarjanje gostejših časovnih vrst, s čimer doseže boljše rezultate od tradicionalnih metod za zapolnjevanje vrzeli. Naša raziskava pomembno prispeva k boljšemu razumevanju obdelave in analize SITS ter ponuja smernice za učinkovito spremljanje vegetacije tudi v primeru omejenih referenčnih podatkov. Ovrednotenje postopkov in metod omogoča utemeljeno izbiro ustreznih pristopov za pripravo podatkov, saj doktorska raziskava nudi analizo pridobljenih rezultatov na primeru klasifikacije kmetijskih kultur in travnikov. Poleg tega doktorska raziskava prikaže potencial združevanja radarskih in optičnih podatkov za izboljšanje zanesljivosti in gostote časovnih vrst za spremljanje razvoja vegetacije.

Language:Slovenian
Keywords:doktorske disertacije, grajeno okolje, SITS, klasifikacija vegetacije, zgodnja klasifikacija, radarsko optični vegetacijski indeks, združevanje radarskih in optičnih podatkov, Sentinel-1, Sentinel-2
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[M. Račič]
Year:2025
Number of pages:XXIV, 150 str.
PID:20.500.12556/RUL-169353 This link opens in a new window
UDC:528.8:004.85:631(043.3)
COBISS.SI-ID:237102339 This link opens in a new window
Publication date in RUL:24.05.2025
Views:423
Downloads:157
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modeling and classification of satellite image time series with machine learning : doctoral dissertation
Abstract:
Satellite image time series (SITS) are crucial for monitoring vegetation dynamics and land use change. In this study, we investigated various aspects of SITS processing and analysis, focusing on the task of grassland and crop classification. We explored the optimal SITS density for grassland classification and found that three to four observations per month are sufficient to achieve results that differ by less than 0.05 in the F1 score from those obtained using full cloud-free SITS. We examined the possibility of early crop classification across different years using transfer learning. Models trained only on source years achieved an average F1 score of 0.825 (threshold value) on target years. Using transfer learning, we surpassed the F1 threshold value with 48,000 training samples (6% of all available reference data) from the target year as early as mid-July. We introduced a novel Radar-Optical Vegetation Index (ROVI) that combines the Normalized Difference Vegetation Index (NDVI) and radar coherence, enabling the creation of denser time series and achieving better results than traditional gap-filling methods. Our research contributes significantly to a better understanding of SITS processing and analysis and provides guidance for effective vegetation monitoring, even under conditions with limited reference data. The evaluation of procedures and methods allows for informed method selection, as our study provides insight into the results of their application for grassland and crop classification. Furthermore, our study demonstrates the potential of combining radar and optical data to improve the reliability and density of time series for monitoring development of vegetation.

Keywords:built environment, vegetation classification, early classification, radar optical vegetation index, fusion of radar and optical data

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back