Details

Sledenje serijskih številk izdelkov s pomočjo strojnega vida
ID Rogelja, Jure (Author), ID Bračun, Drago (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,71 MB)
MD5: 9C16184EC4C1B3A9B12F79475315DC6D

Abstract
V proizvodnji pogosto naletimo na številčne serijske oznake izdelkov, ki so odporne na okolijske vplive, kot so emulzija, kovinski opilki, barva, olje, itd. Oznake so zaradi regulativnih zahtev izdelane tako, da so trpežne in lahko berljive za ljudi, niso pa optimalne za avtomatizirano odčitavanje v sistemih avtomatske identifikacije. To pogosto vodi do dvojnega označevanja in višjih stroškov. Diplomsko delo obravnava razvoj sistema strojnega vida, ki omogoča avtomatizirano branje serijskih oznak izdelkov s pomočjo naprednih kamer. Najprej so predstavljene osnove sledljivosti, optična prepoznava znakov in obdelava slike ter delovanje naprednih kamer. Nato je razvit preizkusni sistem, ki vključuje kamero, ustrezno osvetlitev, preizkusne izdelke in programsko rešitev z uporabniškim vmesnikom. Sistem je preizkušen s postopkom zajema slik, nastavitvijo parametrov prepoznave in učenjem algoritma za branje oznak. Na podlagi eksperimentalnih rezultatov smo analizirali uspešnost prepoznave, omejitve sistema in možne izboljšave.

Language:Slovenian
Keywords:industrijske kamere, optično branje znakov, sledljivost, umetna popačitev, izvajanje meritev
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XX, 51 str.
PID:20.500.12556/RUL-169049 This link opens in a new window
UDC:681.5:004.93:681.772(043.2)
COBISS.SI-ID:240758019 This link opens in a new window
Publication date in RUL:08.05.2025
Views:344
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Tracking product serial numbers using machine vision
Abstract:
In industrial production, product serial numbers are often designed to be resistant to environmental influences such as emulsions, metal shavings, paint, oil, and similar contaminants. Due to regulatory requirements, these markings are made to be durable and easily readable by humans. However, they are not optimized for automated reading in automatic identification systems, which often leads to redundant labeling and increased operational costs. This thesis addresses the development of a machine vision system capable of automated reading of product serial numbers using smart cameras. The fundamental concepts of traceability, optical character recognition, image processing, and the operation of smart cameras are first introduced. A prototype system is then developed, comprising a camera, appropriate illumination, test samples, and a software solution with a user interface. The system is evaluated through image acquisition, parameter configuration for recognition, and training of the reading algorithm. Based on experimental results, the recognition accuracy, system limitations, and potential improvements are analyzed.

Keywords:industrial cameras, optical character recognition, traceability, synthetic distortion, performing measurements

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back