Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Advanced
New in RUL
About RUL
In numbers
Help
Sign in
Details
On regular graphs with Šoltés vertices
ID
Bašić, Nino
(
Author
),
ID
Knor, Martin
(
Author
),
ID
Škrekovski, Riste
(
Author
)
PDF - Presentation file,
Download
(456,75 KB)
MD5: 5DE6048F8C858933B9E546F43B36D188
URL - Source URL, Visit
https://amc-journal.eu/index.php/amc/article/view/3085
Image galllery
Abstract
Let $W(G)$ be the Wiener index of a graph $G$. We say that a vertex $v \in V(G)$ is a Šoltés vertex in $G$ if $W(G - v) = W(G)$, i.e. the Wiener index does not change if the vertex $v$ is removed. In 1991, Šoltés posed the problem of identifying all connected graphs ▫$G$▫ with the property that all vertices of $G$ are Šoltés vertices. The only such graph known to this day is $C_{11}$. As the original problem appears to be too challenging, several relaxations were studied: one may look for graphs with at least $k$ Šoltés vertices; or one may look for $\alpha$-Šoltés graphs, i.e. graphs where the ratio between the number of Šoltés vertices and the order of the graph is at least $\alpha$. Note that the original problem is, in fact, to find all $1$-Šoltés graphs. We intuitively believe that every $1$-Šoltés graph has to be regular and has to possess a high degree of symmetry. Therefore, we are interested in regular graphs that contain one or more Šoltés vertices. In this paper, we present several partial results. For every $r\ge 1$ we describe a construction of an infinite family of cubic $2$-connected graphs with at least $2^r$ Šoltés vertices. Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any $1$-Šoltés graph. We are only able to provide examples of large $\frac{1}{3}$-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs. This leads us to believe that no $1$-Šoltés graph other than $C_{11}$ exists.
Language:
English
Keywords:
Šoltés problem
,
Wiener index
,
regular graphs
,
cubic graphs
,
Cayley graph
,
Šoltés vertex
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication version:
Version of Record
Publication date:
01.01.2025
Year:
2025
Number of pages:
20 str.
Numbering:
Vol. 25, no. 2, article no. P2.01
PID:
20.500.12556/RUL-168564
UDC:
519.17
ISSN on article:
1855-3966
DOI:
10.26493/1855-3974.3085.3ea
COBISS.SI-ID:
232776195
Publication date in RUL:
17.04.2025
Views:
330
Downloads:
114
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Ars mathematica contemporanea
Publisher:
Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:
1855-3966
COBISS.SI-ID:
239049984
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0383-2017
Name:
Kompleksna omrežja
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-3002-2021
Name:
Prirejanja in barvanja povezav v kubičnih grafih
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0294-2020
Name:
Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-1691-2019
Name:
Weissova domneva in posplošitve
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0140-2020
Name:
Geometrije, grafi, grupe in povezave med njimi
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-2481-2020
Name:
Matematične in računske metode za samosestavljanje poliedrov
Funder:
SRDA - Slovak Research and Development Agency
Project number:
VEGA 1/0069/23
Funder:
SRDA - Slovak Research and Development Agency
Project number:
VEGA 1/0011/25
Funder:
SRDA - Slovak Research and Development Agency
Project number:
APVV-23-0076
Funder:
SRDA - Slovak Research and Development Agency
Project number:
APVV-22-0005
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back