Details

Načrtovane visokomolekularne proteinske nanostrukture za predstavitev funkcionalnih proteinskih domen
ID Mezgec, Klemen (Author), ID Gradišar, Helena (Mentor) More about this mentor... This link opens in a new window, ID Jerala, Roman (Comentor)

.pdfPDF - Presentation file, Download (12,85 MB)
MD5: 7543003CCFCDAE9E38FFC845BEEA1787
.pdfPDF - Appendix, Download (2,29 MB)
MD5: 3EB67A6C268D3E2F50A1E6CD5C549805

Abstract
Proteinski inženiring modularnih gradnikov predstavlja zmogljiv pristop za izdelavo načrtovanih visokomolekularnih struktur in naprednih biomaterialov z nanometrsko natančnostjo. Kljub hitremu napredku računalniških metod strojnega učenja za načrtovanje proteinov oziroma topološko opredeljenih proteinskih kompleksov ostaja izdelava umetnih struktur, ki posnemajo naravno arhitekturno ureditev velik izziv. Navdih za delo smo črpali iz človeških mišičnih proteinov, ki zavzemajo značilno topologijo enodimenzionalnih (1D), linearnih vlaken in so ključna za zagotavljanje strukturne integritete in mehano-elastičnih lastnosti mišičnega tkiva. Iz tega razloga smo se osredotočili na razvoj modularnih gradnikov, ki temeljijo na osnovi ß-globularnih imunoglobulinskih in ?-vijačnih spektrinskih ponovitev iz titina oziroma distrofina. Prva izmed zasnovanih strategij temelji na vpeljavi cirkularne permutacije (CP) v ß-globularne titinske domene. Modificiranim gradnikom omogoča vzpostavitev nativnih interakcij med prestavljenim trakom ß in izpostavljenim grebenom ß-ploskve ter posledično sposobnost usmerjenega samo-sestavljanja v nitaste visokomolekularne strukture s primerljivo topološko ureditvijo kot jo lahko najdemo v naravnem titinu. Zaradi težav z robustnostjo tehnologije smo se z enakim ciljem posnemanja naravne arhitekture osredotočili na distrofin, ki je zgrajen iz številnih tandemskih ponovitev spektrinskih modulov. Vsak modul je sestavljen iz svežnja treh ?-vijačnic, kjer sta N- in C-konca locirana na nasprotnih straneh proteinske domene. Z vpeljavo pristopov proteinskega načrtovanja smo zasnovali nabor ortogonalnih gradnikov iz spektrinskih ponovitev in načrtovanih peptidov, ki tvorijo povezovalne motive ovitih vijačnic (OV). Peptide smo v gradnike vključili na način, da so ohranili kontinuiteto N- in/ali C-končnih spektrinskih ?-vijačnic ter tako omogočili izgradnjo iztegnjenih visokomolekularnih struktur v obliki vlaken. Na več načinov smo pokazali, da z zasnovano strategijo lahko pripravimo rekombinantna spektrinska vlakna, ki se nato združijo v robustne večmikrometrske snope (do 15 µm). Tako smo kot prvi opisali strategijo za pripravo umetnih visokomolekularnih struktur v obliki vlaken, ki temeljijo na naravnih spektrinskih gradnikih iz človeškega distrofina in načrtovanih motivih OV. Nadalje smo dokazali, da je povezovanje preko motivov OV mogoče uravnavati s kovinskimi ioni (Zn(II)) in kelatorji (EDTA). Za razvoj uporabnih biomaterialov smo razkrili, da lahko načrtovana spektrinska vlakna služijo kot prostorsko urejeno ogrodje za predstavitev funkcionalnih proteinskih domen ali biološko aktivnih peptidov z natančno nastavljivim razmikom v območju od ~35 do 75 ± 10 nm. Predstavljeni rezultati prikazujejo velik potencial modularnega inženiringa proteinskih gradnikov in načrtovanih motivov OV za razvoj inovativnih biomaterialov v biotehnološke, biomedicinske ali bioinženirske aplikacije.

Language:Slovenian
Keywords:Cirkularna permutacija, titin, spektrinske ponovitve, distrofin, proteinski inženiring, ovite vijačnice, samo-sestavljanje proteinov, proteinska vlakna, biomateriali, nastavljiv razmik
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2025
PID:20.500.12556/RUL-168552 This link opens in a new window
Publication date in RUL:16.04.2025
Views:408
Downloads:139
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Engineered high-molecular weight protein nanostructures for presentation of functional protein domains
Abstract:
Modular protein engineering is a powerful approach for fabricating high-molecular-weight assemblies and biomaterials with nanoscale precision. Despite rapid advances in computational machine learning methods for designing proteins or topologically defined complexes, the construction of artificial structures that mimic natural architecture remains a significant challenge. Inspired by human muscle proteins, which exhibit a characteristic one-dimensional (1D) filamentous architecture and play a key role in maintaining the structural integrity and mechano-elasticity of muscle tissue, we focused on developing modular building blocks based on β-globular immunoglobulin and α-helical spectrin repeats from titin and dystrophin. The first strategy involves introducing circular permutation (CP) into β-globular titin domains. CP enables native interactions between the relocated donor β-strand and the exposed β-cleft, allowing the directional self-assembly of filamentous high-molecular-weight structures with a topology comparable to natural titin. To address robustness issues, we shifted our focus to dystrophin, composed of numerous tandem repeats of spectrin modules. Each module comprises a bundle of three α-helices, with the N- and C-termini located on opposite sides of the fold. Implementing precise protein design approaches, we engineered orthogonal building blocks from spectrin repeats and designed coiled-coil (CC) dimer-forming peptides. The CC peptides were precisely integrated to maintain the seamless continuity of the terminal spectrin α-helices, facilitating the formation of extended filaments. We demonstrated that this strategy leads to the effective construction of recombinant spectrin repeat-based filaments, which can assemble into bundled rigid rods, several micrometers in length (up to 15 µm). To our knowledge, this is the first strategy describing the engineering of high-molecular-weight rod-like structures from natural spectrin repeat-based building blocks derived from human dystrophin and designed CC coupling motifs. Furthermore, we showed that the coupling via CC motifs can be reversibly regulated by metal ions (Zn(II)) and chelators (EDTA). These rigid rods can also serve as a spatially organized scaffold for decorating proteins or biologically active peptides along their length with adjustable spacing ranging from ~35 to 75 ± 10 nm. These findings highlight the paramount potential of modular bottom-up protein engineering and tunable CCs for fabricating functionalized protein biomaterials for numerous biotechnological, biomedical, and bioengineering applications.

Keywords:Circular permutation, titin, spectrin repeats, dystrophin, protein engineering, coiled coils, protein self-assembly, protein rods, biomaterials, adjustable spacing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back