Details

Analiza prevar v računovodskih izkazih : magistrsko delo
ID Kranjc, Mihael (Author), ID Odar, Marjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/magister/kranjc1019-B.pdf This link opens in a new window

Language:Slovenian
Keywords:računovodstvo, računovodski izkazi, gospodarski kriminal, goljufija, pravila, razkritje, raziskave, analiza
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[M. Kranjc]
Year:2012
Number of pages:IV, 109 str.
PID:20.500.12556/RUL-16842 This link opens in a new window
UDC:657
COBISS.SI-ID:21434854 This link opens in a new window
Publication date in RUL:11.07.2014
Views:1645
Downloads:251
Metadata:XML DC-XML DC-RDF
:
KRANJC, Mihael, 2012, Analiza prevar v računovodskih izkazih : magistrsko delo [online]. Master’s thesis. Ljubljana : M. Kranjc. [Accessed 25 March 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/magister/kranjc1019-B.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:Unknown
Keywords:accounting, accounting statements, economic criminal, fraud, rules, disclosure, research, analysis

Similar documents

Similar works from RUL:
  1. Recognising people’s age from face images with convolutional neural networks
  2. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
  3. Iris recognition using deep learning
  4. Automatic classification of buildings with deep learning
  5. Automatic image captioning using deep neural networks
Similar works from other Slovenian collections:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Person activity recognition from image sequence using convolutional neural networks
  3. Food recognition from digital images using convolutional neural networks
  4. Recognition of human emotions on digital images using convolutional neural networks
  5. Time series classification based on convolutional neural networks

Back