Details

Vzdraženje nevrona z bifaznimi in monofaznimi električnimi pulzi
ID BABIĆ, MARINA (Author), ID Maček Lebar, Alenka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,58 MB)
MD5: 258F0F7A4BFB2695F4BBC4670D2CC62D

Abstract
Živčni sistem je temeljni komunikacijski sistem v telesu, ki omogoča hiter in usklajen prenos informacij v obliki akcijskih potencialov – kratkotrajnih sprememb membranske napetosti, ki nastanejo kot odziv na ustrezen dražljaj. Modeliranje živčnih celic je ključnega pomena za razumevanje kompleksnih elektrofizioloških procesov, do katerih prihaja ob draženju živčnih celic z zunanjimi električnimi polji in tokovi. Računalniški in matematični modeli, kot je Hodgkin-Huxleyjev model, omogočajo simulacijo odziva nevrona ter preučevanje številnih patoloških stanj, kot tudi razvoj in razumevanje terapij, ki temeljijo na elektroporaciji in funkcionalni električni stimulaciji. V magistrskem delu sem v programskem jeziku Python implementirala Hodgkin-Huxleyjev model živčne celice ter nabor 54 stimulacijskih protokolov (1 monofazni in 53 bifaznih). S simulacijami sem analizirala vpliv ključnih parametrov protokolov: števila pulzov (N), trajanje posamezne faze (Tp), interfazne pavze (d1) in interpulzne pavze (d2) na prag vzdraženja živčne celice. Rezultati simulacij potrjujejo, da oblika električnega dražljaja pomembno vpliva na vzdraženost živčne celice in s tem povezan prag nastanka akcijskega potenciala. Analiza je pokazala, da daljši pavzi d1 in d2 prispevata k znižanju praga vzdraženja, medtem ko kombinacija krajše d1 in daljše d2 vodi v njegovo izrazito povišanje. Protokoli z daljšo interfazno in krajšo interpulzno pavzo zahtevajo nižje stimulacijske amplitude kot tisti s krajšo d1 in daljšo d2, kar nakazuje pomembno vlogo časovne razporeditve pulzov znotraj stimulacijskega protokola. Poleg tega se je izkazalo, da monofazni pulzi sprožijo akcijski potencial že pri bistveno nižjih amplitudah gostote električnega toka v primerjavi z bifaznimi. Pri zelo kratkih stimulacijskih protokolih je opaziti zakasnjen pojav akcijskega potenciala, kar je posledica časovne dinamike ionskih kanalčkov in njihovih časovnih konstant. Magistrsko delo tako prispeva k boljšemu razumevanju časovne dinamike vzdraženja živčne celice ter vpliva različnih stimulacijskih parametrov na prag nastanka akcijskega potenciala. Pridobljeni rezultati predstavljajo pomemben prispevek k optimizaciji elektrostimulacijskih protokolov in lahko služijo kot osnova za nadaljnje raziskave, usmerjene v razvoj varnejših in učinkovitejših terapevtskih pristopov z zmanjšanim tveganjem za neželene učinke.

Language:Slovenian
Keywords:matematičen model nevrona, Hodgkin-Huxleyjev model, akcijski potencial, bipolarni pulzi, monopolarni pulzi
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-168395 This link opens in a new window
COBISS.SI-ID:234274819 This link opens in a new window
Publication date in RUL:11.04.2025
Views:299
Downloads:78
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Neuron Excitation with Biphasic and Monophasic Electrical Pulses
Abstract:
The nervous system is the body's fundamental communication system, enabling rapid and coordinated transmission of information via action potentials – short-lasting changes in membrane potential initiated by appropriate stimuli. Modelling of nerve cells is crutial for understanding the complex electrophysiological processes that occur when neurons are exposed to external electric fields and currents. Computational and mathematical models, such as the Hodgkin-Huxley model, allow detailed simulation of neuronal responses and the study of various pathological conditions as well as the development and refinement of therapies based on electroporation and functional electrical stimulation. In my master’s thesis, I implemented the Hodgkin-Huxley model of a nerve cell and a set of 54 stimulation protocols (one monophasic and 53 biphasic) in the Python programming language. Through simulations, I analysed the influence of key protocol parameters: number of pulses (N), pulse phase duration (Tp), interphase pause (d1), and interpulse pause (d2) on the excitation threshold of the neuron. Simulation results confirm that the waveform of the electrical stimulus significantly affects neuronal excitability and the corresponding action potential threshold. The analysis showed that longer d1 and d2 pauses generally contribute to a lower excitation threshold, whereas a combination of a short d1 and a long d2 lead to a substantial increase in threshold. Notably, protocols with a long interphase pause and short interpulse pause required lower stimulation amplitudes compared to those with the reverse configuration, highlighting the importance of temporal structuring within the stimulation protocol. Furthermore, it was observed that monophasic pulses triggered action potentials at significantly lower current density amplitudes than biphasic pulses. With very short pulses, a delayed onset of the action potential was observed, attributed to the temporal dynamics of ion channels and their associated time constants. This thesis contributes to a better understanding of the temporal dynamics of neuronal excitation and the influence of different stimulation parameters on the action potential threshold. The results represent an important step toward the optimization of electrostimulation protocols and provide a foundation for future research aimed at developing safer and more effective therapeutic strategies with reduced risk of undesired side effects.

Keywords:mathematical model of neuron, Hodgkin-Huxley model, action potential, monopolar pulses, bipolar pulses

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back