Details

Razvoj trdnih lipidnih nanodelcev za dostavo učinkovine z delovanjem na mitohondrije
ID Čuk, Zala (Author), ID Kocbek, Petra (Mentor) More about this mentor... This link opens in a new window, ID Dragar, Črt (Comentor)

.pdfPDF - Presentation file, Download (1,50 MB)
MD5: A99D714CE9B56AF401888EDC34E29702

Abstract
V zadnjih desetletjih se zaradi neugodnih lastnosti novo odkritih zdravilnih učinkovin vedno bolj uveljavljajo in raziskujejo nanodostavni sistemi, med katere spadajo tudi trdni lipidni nanodelci. Ti izkazujejo številne prednosti, med drugim omogočajo tudi izboljšanje biološke uporabnosti, stabilnosti zdravilnih učinkovin in različne možnosti ciljane dostave zdravilnih učinkovin celo v posamezne znotrajcelične strukture. To je pomembno z vidika izboljšanja terapevtskega učinka mnogih zdravilnih učinkovin, saj lahko tako dosežemo zadrževanje terapevtske količine zdravilne učinkovine na mestu delovanja, posledično pa potrebujemo celokupno manjše odmerke za doseganje terapevtskega učinka in se lahko izognemo morebitnim stranskim učinkom, ki so posledica nespecifičnega porazdeljevanja in delovanja zdravilnih učinkovin. Namen magistrske naloge je bil razviti postopek izdelave trdnih lipidnih nanodelcev na osnovi metode soniciranja in z njim izdelati stabilno disperzijo trdnih lipidnih nanodelcev ter vanje vgraditi modelno zdravilno učinkovino z delovanjem na mitohondrije. Kot osnovni gradnik trdnih lipidnih nanodelcev smo uporabili glicerilbehenat, nanodelce v vodni disperziji pa smo stabilizirali z dodatkom nenabitih ali pozitivno nabitih površinsko aktivnih snovi. Izdelali smo dve različni formulaciji, pri čemer smo za prvo uporabili raztopino dveh stabilizatorjev, poloksamera 188 in polisorbata 80, pri drugi formulaciji pa smo tej raztopini stabilizatorjev dodali še pozitivno nabit N-[1-(2,3-dioleoiloksi)propil)-N,N,N-trimetilamonijev klorid. Povprečna hidrodinamska velikost negativno nabitih nanodelcev (~- 7 mV) je znašala ~190 nm, pozitivno nabiti nanodelci (~+ 25 mV) pa so bili v povprečju manjši (~105 nm). Slednji so se izkazali za stabilnejše, saj so med shranjevanjem pri 4 °C podobno hidrodinamsko velikost brez vizualnih sprememb disperzije ohranili tudi po šestdesetih dneh, medtem ko se je hidrodinamska velikost negativno nabitih nanodelcev povečala že nekje med sedmim in štirinajstim dnevom. Dokazali smo tudi, da na stabilnost izdelanih trdnih lipidnih nanodelcev pomembno vpliva temperatura shranjevanja, in sicer so bili nanodelci v disperzijah stabilnejši pri nižjih temperaturah. V obe formulaciji nanodelcev smo uspešno vgradili modelno zdravilno učinkovino. Vsebnost le-te je v obeh formulacijah nanodelcev znašala ~5 %, učinkovitost vgrajevanja pa je bila v obeh primerih ~40 %. Vgradnja modelne zdravilne učinkovine v trdne lipidne nanodelce je nekoliko zmanjšala njihovo stabilnost med shranjevanjem pri 4 °C. V raziskavi smo uspešno razvili postopek izdelave trdnih lipidnih nanodelcev, ki omogoča vgradnjo modelne zdravilne učinkovine z delovanjem na mitohondrije.

Language:Slovenian
Keywords:mitohondriji, stabilnost, trdni lipidni nanodelci, učinkovitost vgrajevanja, znotrajcelična dostava
Work type:Master's thesis/paper
Organization:FFA - Faculty of Pharmacy
Year:2025
PID:20.500.12556/RUL-168312 This link opens in a new window
Publication date in RUL:09.04.2025
Views:434
Downloads:142
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of solid lipid nanoparticles for the delivery of a mitochondria-targeting drug
Abstract:
In recent decades nanodelivery systems, including solid lipid nanoparticles, have been investigated as a solution for unfavourable properties of new drugs. These systems offer numerous advantages, such as improving the bioavailability and stability of the incorporated drug and enabling targeted drug delivery even at the subcellular level. This approach of drug delivery is important for enhancing the therapeutic effects of drugs, as it allows for higher drug retention at the site of action, thereby requiring smaller doses to achieve the same effect and minimizing potential side effects caused by the nonspecific action of drugs. The aim of master's thesis was to develop a preparation process of solid lipid nanoparticles based on the sonication method, to produce a stable dispersion of solid lipid nanoparticles with incorporated model mitochondria-targeting drug. Glyceryl behenate was used as the primary lipid component for the solid lipid nanoparticles, and prepared aqueous dispersions were stabilized with the addition of neutral or positively charged surface-active agents. Two different formulations were prepared; the first with the solution of two neutral stabilizers, namely poloxamer 188 and polysorbate 80, while the second included an additional positively charged stabilizer, namely N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride. The average hydrodynamic size of negatively charged nanoparticles (~ -7 mV) was ~190 nm, while the positively charged nanoparticles (~ +25 mV) were smaller (~105 nm). The positively charged nanoparticles proved to be more stable during storage at 4°C, maintaining a similar hydrodynamic size without visual changes even after 60 days of storage, whereas the hydrodynamic size of the negatively charged nanoparticles increased significantly between the 7 and 14 days of storage. We demonstrated that the storage temperature significantly affects the stability of the prepared solid lipid nanoparticles, with dispersions being more stable at lower temperatures. We successfully incorporated the model mitochondria-targeting drug into both types of nanoparticles, achieving the drug content of ~5%, and the encapsulation efficiency slightly over 40% for both types of nanoparticles. The incorporation of the drug into the solid lipid nanoparticles slightly reduced their stability during their storage at 4°C. Within our study we successfully developed the procedure for the preparation of stable solid lipid nanoparticle dispersions with incorporated model mitochondria-targeting drug.

Keywords:encapsulation efficiency, intracellular delivery, mitochondria, solid lipid nanoparticles, stability

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back