Details

Priporočilni sistem v Microsoft SQL Serverju
ID Štucin, Aljaž (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (403,03 KB)
MD5: 1C0BD99167E5B2AC08E653AEFCA2AA32

Abstract
V diplomski nalogi je predstavljena implementacija priporočilnih sistemov z uporabo okolja Microsoft SQL Server. Razviti so bili trije algoritmi: K-najbližjih sosedov (KNN), matrična faktorizacija (MF) in algoritem Slope One. Glavni cilj naloge je pokazati, kako lahko z uporabo SQL Serverja omogočimo učinkovit in dostopen priporočilni sistem, ki je neposredno integriran v podatkovno bazo. Za testiranje sta bila uporabljena podatkovna nabora MovieLens1M in Book Crossing, pri čemer so bile izvedene primerjave rezultatov z algoritmi iz knjižnice Surprise. Za razvoj pa je bil uporabljen podatkovni nabor Book Crossing. Analiza je pokazala, da implementacija v SQL Serverju omogoča konkurenčne rezultate, ob tem pa zmanjšuje potrebo po dodatni infrastrukturi in olajša integracijo v obstoječe sisteme.

Language:Slovenian
Keywords:priporočilni sistem, priporočanje s sodelovanjem, Microsoft SQL Server
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-168040 This link opens in a new window
COBISS.SI-ID:232816387 This link opens in a new window
Publication date in RUL:26.03.2025
Views:1094
Downloads:124
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommender System in Microsoft SQL Server
Abstract:
This thesis presents the implementation of recommendation systems using the Microsoft SQL Server environment. Three algorithms were developed: K-nearest neighbors (KNN), matrix factorization (MF), and the Slope One algorithm. The main goal of the thesis was to demonstrate how SQL Server can be used to create an efficient and accessible recommendation system that is directly integrated into the database. For testing, the MovieLens1M and Book Crossing datasets were used, and comparisons of the results were made with algorithms from the Surprise library. For development, the Book Crossing dataset was used. The analysis showed that the SQL Server implementation produces competitive results, while reducing the need for additional infrastructure and simplifying integration into existing systems.

Keywords:recommendation system, collaborative filtering, Microsoft SQL Server

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back