Details

Uporaba nevronske mreže za izračun razdalje med slikama beločnice
ID Kocjančič, Oskar (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window, ID Vitek, Matej (Comentor)

.pdfPDF - Presentation file, Download (765,01 KB)
MD5: E259EB26980D34622CD1D171DEE30A06

Abstract
Diplomska naloga obravnava izziv prepoznavanja oseb na podlagi slik beločnic iz odprte množice podatkov SBVPI. V delu smo se osredotočili na uporabo globokega učenja z namenom izboljšanja natančnosti prepoznavanja med dvema segmentiranima slikama ožilja beločnice. Razvili in ovrednotili smo dva različna pristopa: siamske nevronske mreže in binarno klasifikacijo. Rezultati kažejo, da smo uspešno izboljšali natančnost prepoznavanja. Poleg tega smo ugotovili, da je pristop, ki temelji na ločevanju učenja glede na smer pogleda, obetaven za nadaljnje izboljšave učinkovitosti sistema.

Language:Slovenian
Keywords:računalniški vid, nevronske mreže, globoko učenje, biometrija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-168038 This link opens in a new window
COBISS.SI-ID:232899587 This link opens in a new window
Publication date in RUL:26.03.2025
Views:435
Downloads:124
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using a neural network to calculate the distance between sclera images
Abstract:
This diploma thesis addresses the challenge of person recognition based on sclera images from the open dataset SBVPI. The work focuses on the use of deep learning to improve the recognition accuracy between two segmented vasculature sclera images. We developed and evaluated two different approaches: Siamese neural networks and binary classification. The results show that we have successfully improved the recognition accuracy. Furthermore, we found that the approach based on separating learning according to the direction of gaze is promising for further improvements in system performance.

Keywords:computer vision, neural networks, deep learning, biometrics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back