Details

Nadomeščanje manjkajočih opazovanj temperature s pomočjo meritev drugih meteoroloških parametrov
ID SKOK, ARJAN (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,66 MB)
MD5: 58B5A267E9B7EDC706469D4EF21E84E0

Abstract
Točni meteorološki podatki, še posebej temperatura, so ključnega pomena v širokem naboru področij, od izdelave vremenskih napovedi, do industrijskih in raziskovalnih potreb. Agencija Republike Slovenije za okolje se sooča s težavo, da se v njihovih podatkih pojavljajo manjkajoče meritve temperature. Cilj naše diplomske naloge je bil razviti in preizkusiti več različnih modelov strojnega učenja, ki bodo nadomestili manjkajoče vrednosti s čim manjšo napako, ko na določeni postaji pride zgolj do izpada temperature, ostali podatki pa so nam na voljo. Metode smo učili in testirali na podatkih 97 postaj. Podatke od leta 2016 do 2022 smo uporabili za učno množico, medtem ko smo podatke leta 2023 in 2024 uporabili kot testno množico. Najbolj se je izkazala metoda, ki je temeljila na konvolucijski nevronski mreži, in sicer s povprečno absolutno napako 0.4°C za izpade do dolžine 2 ur in pol.

Language:Slovenian
Keywords:vreme, temperatura, časovne vrste, strojno učenje, umetna inteligenca, nevronske mreže, imputacija, konvolucijska nevronska mreža, imputacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-168003 This link opens in a new window
COBISS.SI-ID:232269315 This link opens in a new window
Publication date in RUL:24.03.2025
Views:367
Downloads:103
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Substitution of missing temperature observation with the assistance of other meteorological parameters
Abstract:
Accurate meteorological data, particularly temperature, are crucial across a wide range of fields, from weather forecasting to industrial and research needs. The Slovenian Environment Agency faces the challenge of missing temperature measurements in their data. This is why our thesis aimed to develop and test various machine learning models that would replace missing values with minimal error. We deal with the event when only temperature data is missing at a given station, while other data remain accessible. We trained and tested our models on 97 stations located across Slovenia. Data from 2016 until 2022 were used for training while data from 2023 and 2024 were used for testing. Models based on convolutional neural networks showed the most promising results achieving a mean absolute error of 0.4°C for outages lasting up to 2.5 hours.

Keywords:weather, temperature, time series, machine learning, artificial inteligence, neural networks, imputation, convolution neural network, imputation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back