Details

Napovedovanje dolžin smučarskih skokov
ID Logar, Sara (Author), ID Vračar, Petar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (563,83 KB)
MD5: 8F02397C1821774B47F27B3FF21B1FA8

Abstract
Smučarski skoki so zelo kompleksen šport, pri katerem majhna variacija nekega dejavnika lahko povzroči velik odklon. V diplomskem delu se ukvarjamo z napovedovanjem dolžin smučarskih skokov s pomočjo metod strojnega učenja. Zbrane podatke o skokih smo obogatili z novimi atributi, pridobljenimi z gručenjem. Za modeliranje podatkov smo uporabili metodo naključnih gozdov. Model smo preizkusili v dveh nalogah: regresijskem napovedovanju dolžin skokov in napovedovanju končne razvrstitve tekmovalcev na koncu sezone. Rezultati so pokazali, da ima model napako, ki bi na sto metrski skakalnici pomenila 6 metrov. Pri končni razvrstitvi se povprečno zmoti za eno mesto, drsenje časovnega okna pa postopoma izboljšuje napovedno zmogljivost. Pričujoče delo prispeva k širitvi uporabe metod strojnega učenja na to kompleksno področje in odpira prostor za nadaljnje raziskave.

Language:Slovenian
Keywords:športna analitika, modeliranje podatkov, smučarski skoki, napovedovanje vrstnega reda
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-167613 This link opens in a new window
COBISS.SI-ID:229998339 This link opens in a new window
Publication date in RUL:04.03.2025
Views:429
Downloads:80
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of ski jump distances
Abstract:
Ski jumping is a complex sport in which small changes in certain factors can result in significant differences in performance. This thesis focuses on predicting ski jump lengths using machine learning methods. We enriched the collected jump data with new attributes obtained by clustering. We used the random forest method to model the data. We tested the model on two tasks: regression-based prediction of jump lengths and forecasting competitors' final rankings at the end of the season. The results showed that the model has an error of 6 meters on a 100-meter ski jump. The final ranking deviates by one place on average, and sliding the time window gradually improves the predictive performance. The present work contributes to expanding the application of machine learning methods to this complex area and opens up space for further research.

Keywords:sports analytics, data modeling, ski jumping, ranking prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back