Details

Avtomatizirano strojno učenje v sistemih za upravljanje podatkovnih baz
ID DIZDAREVIĆ, TIM (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,03 MB)
MD5: 8883F98BF5F61CA7073541BDC1C7A825

Abstract
Umetna inteligenca je postala nepogrešljiva na področju podatkovnih tehnologij. Omogoča gradnjo ter uporabo izjemno natančnih modelov za napovedovanje, s katerimi si lahko pomagamo pri sprejemanju pomembnih odločitev. Cilj diplomske naloge je predstaviti uporabo avtomatiziranega strojnega učenja v sodobnih sistemih za upravljanje podatkovnih baz s študijo primera MindsDB, poglobitev v izzive strojnega učenja, prikaz uporabe velikih jezikovnih modelov ter s koraki CRISP-DM implementirati in uporabiti napovedne modele na raznovrstnih podatkovnih virih. Rezultate kvantitativno primerjamo tudi s tradicionalnimi tehnikami strojnega učenja. MindsDB je pokazal uspešnost in vsestranskost pri različnih nalogah napovednega modeliranja ter sposobnost vključevanja velikih jezikovnih modelov, kar kaže na uporabnost v različnih scenarijih.

Language:Slovenian
Keywords:MindsDB, strojno učenje, napovedni modeli, CRISP-DM, avtomatizirano strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-167555 This link opens in a new window
COBISS.SI-ID:228258819 This link opens in a new window
Publication date in RUL:27.02.2025
Views:480
Downloads:91
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automated machine learning inside database management systems
Abstract:
Artificial intelligence has become indispensable in the field of data technologies. It allows us to build and use highly accurate predictive models that help us make important decisions. The aim of this thesis is to present the use of automated machine learning in modern database management systems, with a case study of MindsDB. The thesis delves into the challenges of machine learning, demonstrates the use of large language models, and applies predictive models to diverse data sources using the CRISP-DM methodology. The results are quantitatively compared with traditional machine learning techniques. MindsDB has demonstrated success and versatility across various predictive modeling tasks, as well as the ability to integrate large language models, highlighting its usefulness in different scenarios.

Keywords:MindsDB, machine learning, predictive models, CRISP-DM, automated machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back