Details

Vzajemna vidnost in celotna vzajemna vidnost v grafih
ID Kastelic, Žan (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (794,67 KB)
MD5: 98A9DBA31C450E1F88939530F5C45AF9

Abstract
Naj bo $G=(V(G),E(G))$ graf in $X \subseteq V(G)$. Pravimo, da je množica $X$ vzajemno vidna, če za par vozlišč $u,v \in X$ velja, da na najkrajši poti med njima ne leži nobeno drugo vozlišče iz $X$. Vzajemna vidnost grafa $G$ je kardinalna vrednost katerekoli največje vzajemno vidne množice, $\mu(G)=|X|$. Naj bo še $X_t \subseteq V(G)$. Množica $X_t$ je celotno vzajemno vidna, če med poljubnima vozliščema iz $V(G)$ obstaja najkrajša pot, na kateri ne leži vozlišče iz $X_t$. Kardinalnost katerekoli največje celotno vzajemno vidne množice $X_t$ imenujemo celotna vzajemna vidnost grafa $G$, ki jo označimo z $\mu_t(G)=|X_t|$. S pomočjo različnih grafovskih invariant so podane spodnje in zgornje meje za $\mu(G)$ in $\mu_t(G)$. Za nekatere družine grafov in njihove produkte so podane točne vrednosti. Dokazano je, da je problem NP-poln.

Language:Slovenian
Keywords:graf, vzajemna vidnost, leksikografski produkt grafov, kartezični produkt grafov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-167519 This link opens in a new window
UDC:519.17
COBISS.SI-ID:227238659 This link opens in a new window
Publication date in RUL:26.02.2025
Views:588
Downloads:87
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mutual-visibility and total mutual-visibility in graphs
Abstract:
Let $G=(V(G),E(G))$ be a graph and a set of $X \subseteq V(G)$. $X$ is a mutual-visibility set if there exists a shortest path between vertices of $X$ without further vertices from $X$. Mutual-visibility of a graph $G$ is the cardinality of any largest mutually visible set, $\mu(G)=|X|$. Let $X_t \subseteq V(G)$ be a set. $X_t$ is total mutual-visibility set if there exists a shortest path between any two vertices of $V(G)$ without further vertices from $X_t$. The cardinality of any largest total mutual visibility set $X_t$ is called the total mutual-visibility number of the graph $G$, denoted as $\mu_t(G)=|X_t|$. Lower and upper bounds for $\mu(G)$ and $\mu_t(G)$ are given using various graph invariants. Exact values are given for certain graph families and their products. It is proven that the problem is NP-complete.

Keywords:graph, mutual-visibility, lexicographic product of graphs, Cartesian product of graphs

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back