Details

On $L^2$ approximation by planar Pythagorean-hodograph curves
ID Farouki, Rida T. (Author), ID Knez, Marjetka (Author), ID Vitrih, Vito (Author), ID Žagar, Emil (Author)

.pdfPDF - Presentation file, Download (1,33 MB)
MD5: 505FB73CDB8E60E7D1D8692777EA47C6
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0378475425000394 This link opens in a new window

Abstract
The $L^2$ approximation of planar curves by Pythagorean-hodograph (PH) polynomial curves is addressed, based on the distance defined by a metric for planar curves represented as complex valued functions of a real parameter. Because of the nonlinear nature of polynomial PH curves, constructing $L^2$ approximants involves solving a nonlinear optimization problem. However, a simplified method that requires only the solution of a linear system may be developed by formulating the $L^2$ approximation in the preimage space. The extension of the methodology to approximation by PH B-spline curves is also addressed, and several examples are provided to illustrate its implementation and potential.

Language:English
Keywords:$L^2$ approximation, complex polynomial, Pythagorean-hodograph curve, Pythagorean-hodograph spline, preimage
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2025
Number of pages:Str. 296-310
Numbering:Vol. 233
PID:20.500.12556/RUL-167348 This link opens in a new window
UDC:519.6
ISSN on article:1872-7166
DOI:10.1016/j.matcom.2025.02.001 This link opens in a new window
COBISS.SI-ID:226119171 This link opens in a new window
Publication date in RUL:17.02.2025
Views:442
Downloads:243
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Mathematics and computers in simulation
Shortened title:Math. comput. simul.
Publisher:Elsevier, International Association for Mathematics and Computers in Simulation
ISSN:1872-7166
COBISS.SI-ID:23159813 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:$L^2$ aproksimacija, PH krivulja, PH zlepek, praslika

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0288
Name:Algebra in njena uporaba

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0137
Name:Nelinearni valovi in spektralna teorija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0404
Name:Matematično modeliranje in enkripcija: od teoretičnih konceptov do vsakodnevnih aplikacij

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0296
Name:Gladki izogeometrični prostori zlepkov nad večdelnimi domenami

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4414
Name:ProBiS-Fold pristop za določanje vezavnih mest za celoten strukturni človeški proteom pri odkrivanju zdravil

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back