Details

Uncovering temporal patterns in visualizations of high-dimensional data
ID Poličar, Pavlin Gregor (Author), ID Zupan, Blaž (Author)

.pdfPDF - Presentation file, Download (3,14 MB)
MD5: 4B59BCDCE281E0647419FFE6F69B725A
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s10994-025-06734-z This link opens in a new window

Abstract
With the increasing availability of high-dimensional data, analysts often rely on exploratory data analysis to understand complex data sets. A key approach to exploring such data is dimensionality reduction, which embeds high-dimensional data in two dimensions to enable visual exploration. However, popular embedding techniques, such as t-SNE and UMAP, typically assume that data points are independent. When this assumption is violated, as in time-series data, the resulting visualizations may fail to reveal important temporal patterns and trends. To address this, we propose a formal extension to existing dimensionality reduction methods that incorporates two temporal loss terms that explicitly highlight temporal progression in the embedded visualizations. Through a series of experiments on both synthetic and real-world datasets, we demonstrate that our approach effectively uncovers temporal patterns and improves the interpretability of the visualizations. Furthermore, the method improves temporal coherence while preserving the fidelity of the embeddings, providing a robust tool for dynamic data analysis.

Language:English
Keywords:temporal-data visualization, dimensionality reduction, data visualization
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FRI - Faculty of Computer and Information Science
Publication status:Published
Publication version:Version of Record
Year:2025
Number of pages:27 str.
Numbering:Vol. 114, iss. 2, art. 35
PID:20.500.12556/RUL-166905 This link opens in a new window
UDC:004
ISSN on article:0885-6125
DOI:10.1007/s10994-025-06734-z This link opens in a new window
COBISS.SI-ID:224462339 This link opens in a new window
Publication date in RUL:30.01.2025
Views:115
Downloads:805
Metadata:XML DC-XML DC-RDF
:
POLIČAR, Pavlin Gregor and ZUPAN, Blaž, 2025, Uncovering temporal patterns in visualizations of high-dimensional data. Machine learning [online]. 2025. Vol. 114, no. 2,  35. [Accessed 14 March 2025]. DOI 10.1007/s10994-025-06734-z. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=166905
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Machine learning
Shortened title:Mach. learn.
Publisher:Springer Nature
ISSN:0885-6125
COBISS.SI-ID:2623527 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:vizualizacija časovnih podatkov, zmanjševanje dimenzij, vizualizacija podatkov

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P2-0209
Name:Umetna inteligenca in inteligentni sistemi

Funder:ARRS - Slovenian Research Agency
Project number:V2-2272
Name:Opredelitev okvira za zagotavljanje zaupanja javnosti v sisteme umetne inteligence in njihove uporabe

Similar documents

Similar works from RUL:
  1. Water wins, communication matters
  2. Pravne dileme personalizirane medicine
  3. Genetic resources of extremotolerant fungi
  4. Zadovoljstvo bolnikov na teleradioterapevtskem (TRT) oddelku Onkološkega inštituta v Ljubljani
Similar works from other Slovenian collections:
  1. Mesto Celje v drugi polovici 15. stoletja
  2. Esej in književnost v drugi polovici dvajsetega stoletja
  3. Današnja slovenska Štajerska v drugi polovici 13. stoletja
  4. Demografska in zemljiškoposestna podoba Dravskega polja v drugi polovici 17. stoletja
  5. Položaj slovenščine v drugi polovici 19. stoletja

Back