Details

Analiza inverznega problema pri določanju parametrov kardiovaskularnega sistema iz sintetičnih arterijskih pulznih valov : magistrsko delo
ID Burger, Evgenija (Author), ID Zupan, Blaž (Mentor) More about this mentor... This link opens in a new window, ID Kirn, Borut (Comentor)

.pdfPDF - Presentation file, Download (9,25 MB)
MD5: C538CB589DCA3627FC7C6B1CB7666CA2

Abstract
Padec arterijskega pulznega tlaka pod 65 mmHg ima lahko za bolnika v popolni anesteziji med kirurškim posegom trajne posledice, zato je ključno, da se njegovo stanje čim prej stabilizira. Vendar vzroka za padec ni vedno mogoče takoj ugotoviti, saj anesteziologi pogosto nimajo natančnega vpogleda v stanje kardiovaskularnega sistema. Z razvojem neinvazivnih metod za merjenje krvnega tlaka so se razvile tudi metode za analizo oblik arterijskih pulznih valov, ki nam lahko povejo več o stanju bolnika. V magistrskem delu smo želeli raziskati možnosti, kako dobro lahko iz oblike valov ocenimo stanje kardiovaskularnega sistema. Uporabili smo sintetične podatke, ki smo jih za namen raziskovanja pridobili z matematičnim modelom kardiovaskularnega sistema. Zavedamo se omejitev raziskav na sintetičnih podatkih, a je vseeno njihova vloga pri razvoju analiznih metod lahko zelo pomembna. S pomočjo analize glavnih komponent, L1 regularizirane regresije in algoritma XGBoost smo ocenili, kako dobro lahko iz oblike valov ocenimo vrednosti parametrov, s katerimi so bili valovi simulirani, in posledično opišemo stanje kardiovaskularnega sistema. Na koncu nas je zanimalo tudi, kako dobro lahko stanje sistema opišemo zgolj z opazovanjem prostora simuliranih valov in vrednosti značilk.

Language:Slovenian
Keywords:hipotenzija, simulacije srčnožilnega sistema, strojno učenje, L1 regularizacija, analiza glavnih komponent, XGBoost
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-166875 This link opens in a new window
UDC:531/533:004
COBISS.SI-ID:223876611 This link opens in a new window
Publication date in RUL:29.01.2025
Views:433
Downloads:140
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of the Inverse Problem for Determining Cardiovascular System Parameters from Synthetic Arterial Pulse Waves
Abstract:
A drop in arterial pulse pressure below 65 mmHg can be life-threatening for a patient under general anesthesia during surgery, making rapid stabilization crucial. However, identifying the cause of this drop is not always immediately possible, as anesthesiologists often lack precise insights into the condition of the cardiovascular system. With the development of non-invasive blood pressure measurement methods, new techniques for analyzing arterial pulse waveforms have emerged, offering valuable insights into the patient's condition. This master's thesis aims to explore the potential of evaluating cardiovascular status based on waveform characteristics. Synthetic data, generated through a mathematical model of the cardiovascular system was used for this analysis. Although studies based on synthetic data have limitations, they can still play an important role in the development of analytical methods. Using principal component analysis, L1-regularized regression, and the XGBoost algorithm, we assessed how well waveform shapes could be used to estimate the parameters with which the waveforms were simulated, thereby describing the cardiovascular system's state. Finally, we also examined how effectively the system’s state could be described solely by observing the space of simulated waveforms and feature values.

Keywords:hypotension, cardiovascular system simulations, machine learning, L1 regularization, principal component analysis, XGBoost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back