Details

Statistical methods with machine learning in astroparticle physics
ID Bortolato, Blaž (Author), ID Kamenik, Jernej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,45 MB)
MD5: DBBC8C50D6FDC98CCEB46B817B33B12D

Abstract
Understanding the composition of ultra-high-energy cosmic rays (UHECRs) is essential for constraining their origins, unveiling acceleration mechanisms, and potentially studying hadron interactions at extreme energies. This thesis presents a comprehensive analysis of UHECR composition through a novel method, using publicly available data from the Pierre Auger Observatory and simulated events generated with four hadronic models—EPOS, Sibyll, QGSJet01, and QGSJetII-04—across multiple energy intervals. The proposed method compares features of measured and simulated events while accounting for systematic and statistical uncertainties in both datasets. This approach enables exploration of a broad range of possible compositions, from protons to iron and up to uranium. We compute rejection confidence levels for each hadronic model based on inferred compositions and introduce a method for generating lists of distinguishable nuclei for inference, as well as determining the minimum number of nuclei required for unbiased composition inference. Key results include bounds on the fraction of primaries with atomic numbers greater than a given $Z$, from $Z=1$ (proton) to $Z=94$ (plutonium), and event classification by primary type. Additionally, we propose a method to effectively increase the number of fluorescence events by leveraging correlations between fluorescence-based observable $\X_{\max}$ and ground-based observables. The developed methods provide a flexible and efficient framework for UHECR composition inference, advancing research in the field and offering statistical techniques applicable across various domains.

Language:English
Keywords:kozmični žarki, sestava, statistična inferenca, verjetnostna funkcija, klasifikacija, observatorij Pierre Auger
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-166750 This link opens in a new window
COBISS.SI-ID:223685891 This link opens in a new window
Publication date in RUL:24.01.2025
Views:777
Downloads:399
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Statistične metode s strojnim učenjem v astrofiziki osnovnih delcev
Abstract:
Razumevanje sestave kozmičnih žarkov z ultra-visoko-energijo je bistveno za raziskovanje njihovega izvora, razkrivanje mehanizmov pospeševanja in za potencialno preučevanje hadronskih interakcij pri ekstremnih energijah. Ta disertacija predstavlja celovito analizo sestave ultra-visoko-energijskih kozmičnih žarkov prek nove metode, ki uporablja javno dostopne podatke s Pierre Auger observatorija in simulirane dogodke, ustvarjene z uporabo štirih hadronskih modelov—EPOS, Sibyll, QGSJet01 in QGSJetII-04—v različnih energijskih intervalih. Predlagana metoda primerja količine izmerjenih in simuliranih dogodkov ter upošteva sistematične in statistične negotovosti za oba tipa podatkov. Ta pristop omogoča vključevanje širokega spektra možnih sestav, ki vključujejo delce od protona do železovega jedra pa vse do uranovega jedra. Izračunali smo stopnje zaupanja zavrnitve posameznega hadronskega modela na podlagi izračunanih sestav ter uvedli smo metodo za generiranje seznamov ločljivih jeder za izračun sestave ter smo določili minimalno število jeder, potrebnih za nepristransko določitev sestave. Med glavnimi rezultati spada določitev zgornjih in spodnjih mej za deleže primarnih delcev (jeder) z atomskimi številkami večjimi od danega $Z$, za $Z=1$ (proton) pa do $Z=94$ (plutonij) ter klasifikacija dogodkov glede na vrsto jedra oziroma primarnega delca. Poleg tega predlagamo metodo, ki efektivno poveča število fluorescenčnih dogodkov z izkoriščanjem korelacij med fluorescenčno opazljivko $\X_{\max}$ in opazljivkami iz površinskih detektorjev. Predstavljene metode predstavljajo orodja za učinkovit in zanesljiv izračun sestave ultra-visoko-energijskih kozmičnih žarkov, kar predstavlja korak naprej k razumevanju narave teh delcev. Uporabne so tudi v drugih področjih, saj so zasnovane na statističnih principih.

Keywords:cosmic rays, composition, statistical inference, likelihood, classification, Pierre Auger Observatory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back