Details

Vpeljava mehkih ocen v večkriterijsko odločanje pri načrtovanju gospodarjenja z gozdovi
ID Šmidovnik, Tjaša (Author), ID Grošelj, Petra (Mentor) More about this mentor... This link opens in a new window, ID Ficko, Andrej (Comentor)

.pdfPDF - Presentation file, Download (4,73 MB)
MD5: 2FF2FE330EE8DCF1529347FB014043A5

Abstract
V doktorski disertaciji smo nadgradili več metod večkriterijskega odločanja tako, da se lahko uporabljajo z mehkimi števili in pri skupinskem odločanju. Predstavili smo novo razvito metodo DEMATEL končne vsote vplivov (FSI DEMATEL) za ugotavljanje medsebojnih vplivov elementov v sistemu, kjer pri izračunu matrike skupnih vplivov elementov uporabimo končno vsoto členov in s tem zagotovimo konvergenco vrste. Z metodo FSI DEMATEL je posamezen vpliv elementa upoštevan le enkrat, s čimer dobimo ustreznejše vrednotenje medsebojnih vplivov elementov. Metodi WINGS, ki poleg vplivov upošteva še moč elementov, smo priredili mehko različico WINGS končne vsote vplivov (FSI WINGS). Metodo skupinskega večkriterijskega odločanja BWM smo nadgradili v metodo združevanja individualnih ocen v skupinske ocene – SGBWM. SGBWM pri združevanju individualnih uteži v skupinske upošteva podobnost med posameznimi odločevalci pri izbiri najboljše alternative. Delovanje vseh metod smo analizirali na primerih in novo razvitem večkriterijskem modelu za skupinsko odločanje za izbiro najboljše alternative za upravljanje z gozdovi, ki upošteva mehke informacije. Kriteriji so bile funkcije gozda, podkriteriji so bila tveganja, izbirali smo med štirimi alternativami. Kriteriji so bili ocenjeni z metodo mehki FSI WINGS, podkriteriji z metodo mehki SGBWM, alternative pa z metodo mehki R-TOPSIS. Model so ocenjevale različne skupine strokovnjakov. Vzorec je bil majhen, saj je bilo ključnega pomena delovanje novo razvitih metod na postavljenem večrkiterijskem modelu gospodarjenja z gozdovi. Rezultati kažejo, da ni velikih razlik v pomembnosti med posameznimi funkcijami gozda. Največje tveganje za gospodarjenje z gozdom predstavljajo podnebne spremembe. Kot najboljša alternativa se je izkazala alternativa 3 – nadzor in regulacija.

Language:Slovenian
Keywords:FSI WINGS, FSI DEMATEL, mehka števila, gospodarjenje z gozdovi, SGBWM
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:BF - Biotechnical Faculty
Publisher:[T. Šmidovnik]
Year:2024
PID:20.500.12556/RUL-166339 This link opens in a new window
UDC:630*62:519.8(043.3)=163.6
COBISS.SI-ID:221292803 This link opens in a new window
Publication date in RUL:08.01.2025
Views:482
Downloads:184
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Introducing fuzzy numbers in multicriteria decision making in forest management planning
Abstract:
In the doctoral dissertation, we improved several multi-criteria decision-making methods to work with fuzzy numbers and in group decision-making. We introduced the DEMATEL method of finite sum of influences (FSI DEMATEL) to determine the mutual influences of elements in a system, where the finite sum of terms is used in the calculation of the total influence matrix of elements, ensuring convergence. With the FSI DEMATEL method, the influence of each element is considered only once, providing a more appropriate evaluation of mutual influences among elements. We adapted the WINGS method, which takes into account both influences and the strength of elements, to a fuzzy version called FSI WINGS (finite sum of influences WINGS). We upgraded the BWM method of group multi-criteria decision-making into a new method for aggregating individual assessments into group assessments (Similarity-awarded Group Best-Worst Method, SGBWM). In SGBWM, the similarity between individual decision-makers in choosing the best alternative is awarded when aggregating individual weights into group weights. We analyze the performance of all methods with examples. We set up a multi-criteria model for group decision-making for selecting the best alternative for forest management, which considers fuzzy information. The criteria were forest functions, the sub-criteria were risks, and we chose among four alternatives. The criteria were evaluated using the fuzzy FSI WINGS method, the sub-criteria with the fuzzy SGBWM method, and the alternatives with the fuzzy R-TOPSIS method. Various expert groups evaluated the model. The results show that there are no significant differences in the importance of individual forest functions. The greatest risk to forest management is climate change. The best alternative was found to be alternative 3 – monitoring and regulation.

Keywords:FSI WINGS, FSI DEMATEL, fuzzy numbers, forest management planning, SGBWM

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back