Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Advanced
New in RUL
About RUL
In numbers
Help
Sign in
Details
Total mutual-visibility in Hamming graphs
ID
Bujtás, Csilla
(
Author
),
ID
Klavžar, Sandi
(
Author
),
ID
Tian, Jing
(
Author
)
PDF - Presentation file,
Download
(510,36 KB)
MD5: A38B5A842396D568C5C20378068B7B57
URL - Source URL, Visit
https://www.opuscula.agh.edu.pl/om-vol45iss1art5
Image galllery
Abstract
If $G$ is a graph and $X\subseteq V(G)$, then $X$ is a total mutual-visibility set if every pair of vertices $x$ and $y$ of $G$ admits a shortest $x,y$-path $P$ with $V(P) \cap X \subseteq \{x,y\}$. The cardinality of a largest total mutual-visibility set of $G$ is the total mutual-visibility number $\mu_{\rm t}(G)$ of $G$. In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values $\mu_{\rm t}(K_{n_1}\,\square\, K_{n_2}\,\square\, K_{n_3})$ are determined. It is proved that $\mu_{\rm t}(K_{n_1} \,\square\, \cdots \,\square\, K_{n_r}) = O(N^{r-2})$▫, where $N = n_1+\cdots + n_r$, and that $\mu_{\rm t}(K_s^{\,\square\,, r}) = \Theta(s^{r-2})$ for every $r\ge 3$, where $K_s^{\,\square\,, r}$ denotes the Cartesian product of $r$ copies of $K_s$. The main theorems are also reformulated as Turán-type results on hypergraphs.
Language:
English
Keywords:
mutual-visibility set
,
total mutual-visibility set
,
Hamming graphs
,
Turán-type problem
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.01.2025
Year:
2025
Number of pages:
Str. 63-78
Numbering:
Vol. 45, no. 1
PID:
20.500.12556/RUL-166274
UDC:
519.17
ISSN on article:
1232-9274
DOI:
10.7494/OpMath.2025.45.1.63
COBISS.SI-ID:
220652803
Publication date in RUL:
30.12.2024
Views:
509
Downloads:
99
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica : Opuscula Mathematica
Shortened title:
Rocz. Akad. Gór.-Hut. im. Stanisława Staszica, Opusc. Math.
Publisher:
AGH University of Science and Technology Press
ISSN:
1232-9274
COBISS.SI-ID:
16179545
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
množica vzajemne vidnosti
,
množica celotne vzajemne vidnosti
,
Hammingovi grafi
,
problem Turánovega tipa
Projects
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0297
Name:
Teorija grafov
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0285
Name:
Metrični problemi v grafih in hipergrafih
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0355
Name:
Prirejanja, transverzale in hipergrafi
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back