Details

Avtomatska analiza izbranih člankov o računalniškem mišljenju : magistrsko delo
ID Lazić, Vesna (Author), ID Nančovska Šerbec, Irena (Mentor) More about this mentor... This link opens in a new window, ID Mladenić, Dunja (Comentor)

.pdfPDF - Presentation file, Download (2,18 MB)
MD5: 12823D2A35B047576EED19BFFBCAA9A0

Abstract
V magistrskem delu smo analizirali povzetke člankov o računalniškem mišljenju. Za ta namen smo uporabili metode umetne inteligence, in sicer strojno učenje, računalniško analizo besedila in semantične tehnologije. S tem smo pridobili vpogled v koncepte računalniškega mišljenja. Obravnavali smo raziskovalne članke o računalniškem mišljenju treh znanih bibliografskih baz: Google Scholar, Scopus in Semantic Scholar. V teoretičnem delu magistrskega dela smo opisali različne definicije računalniškega mišljenja, spretnosti in veščine, ki jih računalniško mišljenje obsega. Znanja in spretnosti računalniškega mišljenja smo povezali s cilji, ki jih vsebuje slovenski učni načrt za neobvezni in obvezni izbirni predmet računalništvo v 2. vzgojno-izobraževalnem obdobju osnovne šole, ter s cilji, ki jih določa kurikul ACM K-12. Opisali smo računalniško analizo besedilnih dokumentov, pri čemer nam je bilo v pomoč orodje OntoGen, ki omogoča analizo, razvrščanje in vizualizacijo besedilnih dokumentov ter združevanje dokumentov v skupine. V empiričnem delu smo opisali analizo povzetkov člankov izbranih bibliografskih baz in rezultate analize, pri čemer je bil poudarek na tem, na kakšen način so članki razporejeni v različne skupine glede na različne dejavnike: komu so namenjeni (učiteljem računalništva, splošnim učiteljem, raziskovalcem – akademikom), katero starostno skupino učencev oziroma raven izobraževanja naslavljajo (osnovnošolsko, srednješolsko, akademsko), katere spretnosti (kodiranje, algoritme, abstrakcije, dekompozicijo, razpoznavanje vzorcev), pristope (projektno delo, problemsko učenje, raziskovalno učenje in podobno) in okolja (računalništvo brez računalnika, programiranje z delčki, tekstovno programiranje, fizično računalništvo in podobno) obravnavajo ter na kateri kontekst učenja se nanašajo (povezava z učnim načrtom določenega predmeta, medpredmetno povezovanje, aktivnosti za prosti čas). Z analizo člankov in njihovim razporejanjem v skupine ter z ugotavljanjem njihovih ključnih razlik in podobnosti smo želeli pridobiti širši vpogled v to, komu so ti članki namenjeni. Z analizo smo ugotovili, da Google Scholar nagovarja raziskovalce – praktike, učitelje, študente in vse, ki iščejo primere dobre prakse, Scopus služi predvsem raziskovalcem – akademikom, institucijam, strokovnjakom in oblikovalcem politik, ki se ukvarjajo z akademskimi raziskavami na področju računalniškega mišljenja, medtem ko je Semantic Scholar namenjen predvsem strokovnjakom in novim udeležencem iz različnih znanstvenih in tehničnih disciplin, ki jih zanima integracija računalniškega mišljenja v njihovo poklicno prakso. Scopus poudarja akademske raziskave in področje računalniškega izobraževanja (Computing Education Research – CER) ter zagotavlja celovit pregled. Google Scholar pa se osredotoča na praktične vidike, zaradi česar je dragocen vir za učitelje, ki izvajajo računalniško mišljenje v razredu. Raziskovalci lahko izberejo vir, ki ustreza njihovim potrebam: Scopus za akademske raziskave, Semantic Scholar za splošen pregled in Google Scholar za praktične ideje za učilnico.

Language:Slovenian
Keywords:Osnovnošolsko učenje in poučevanje, Informatika, računalniško mišljenje, izobraževanje, spretnosti, kurikul, učni načrt, računalniška analiza besedil, semantične tehnologije, umetna inteligenca, strojno učenje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:V. Lazić
Year:2024
Number of pages:95 str.
PID:20.500.12556/RUL-166151 This link opens in a new window
UDC:004.89(043.2)
COBISS.SI-ID:221664003 This link opens in a new window
Publication date in RUL:21.12.2024
Views:572
Downloads:122
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic analysis of selected articles on computational thinking
Abstract:
In the master's thesis, we analyzed abstracts of articles on computational thinking. For this purpose, we used artificial intelligence methods, specifically machine learning, text mining, and semantic technologies, to gain insights into computational thinking concepts. We examined research articles on computational thinking from three well-known bibliographic databases: Google Scholar, Scopus, and Semantic Scholar. In the theoretical part of the thesis, we described various definitions of computational thinking, as well as the skills and competencies it encompasses. We connected computational thinking skills with the goals outlined in the Slovenian curriculum for the elective and mandatory elective subject of computer science in primary school, as well as with the objectives set by the ACM K-12 curriculum. We described a computational analysis of text documents using the tool OntoGen, which allows for analysis of textual documents, document classification, document clustering, visualization. In the empirical part of the thesis, we described the analysis of abstracts from selected bibliographic databases and the experimental results showing how the articles were grouped based on various factors: their target audience (computer science teachers, general educators, researchers-academics), the age group or educational level they address (primary school, secondary school, academic), the skills they cover (coding, algorithms, abstraction, decomposition, pattern recognition), the approaches they use (project-based learning, problem-based learning, inquiry-based learning, etc.), the environments they discuss (unplugged activities, block-based programming, text-based programming, physical computing), and the learning context (connection to the curriculum of a specific subject, cross-curricular integration, extracurricular activities). By analyzing the articles and grouping them, as well as identifying their key differences and similarities, we aimed to gain a broader understanding of the target audiences of these articles. The analysis revealed that Google Scholar is aimed at researchers, teachers, students, and all those searching for best practices in the research filed, while Scopus primarily serves researchers, academics, institutions, professionals, and policymakers working on academic research in the field of computational thinking. Furthermore, Semantic Scholar is intended mainly for professionals and new participants from various scientific and technical disciplines interested in integrating computational thinking into their professional practice. Scopus emphasizes academic research and the Computing Education Research (CER) community, offering a comprehensive overview. Google Scholar, on the other hand, focuses on practical aspects, making it a valuable resource for teachers implementing computational thinking in the classroom. Researchers can choose the source that best suits their needs: Scopus for academic research, Semantic Scholar for a general overview, and Google Scholar for practical classroom ideas.

Keywords:Computational thinking, education, skills, curriculum, syllabus, text analysis, semantic technologies, artificial intelligence, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back