Details

Klasifikacija zvočnih signalov v proizvodnji z uporabo metode nenadzorovanega strojnega učenja k-means
ID Reba, Aleks (Author), ID Berlec, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Prezelj, Jurij (Comentor)

.pdfPDF - Presentation file, Download (9,04 MB)
MD5: 0457D6B9897A0B6646E48EB36A22005E

Abstract
V sodobnih konkurenčnih industrijskih okoljih je bistveno ohranjanje optimalne učinkovitosti in kakovosti. Tradicionalne metode se pogosto zanašajo na vizualne preglede ali spremljanje na podlagi senzorjev, ki pa morda ne zaznajo subtilnih sprememb ali ne zagotavljajo vpogleda v realnem času. V tem delu je bila z namenom izboljšanja spremljanja in vrednotenja proizvodnih procesov v realnem času razvita metodologija za uporabo nenadzorovanih algoritmov strojnega učenja, natančneje algoritma k-means, za razvrščanje in analizo zvočnih podatkov iz proizvodnih okolij. Metodologija obsega prepoznavanje ključnih zvočnih značilnosti, kot so usmerjenost, lastnosti frekvenčnega spektra in statistični deskriptorji signalov na več časovnih konstantah, ter uporabo teh značilnosti za učenje algoritma k-means. Rezultati klasifikacije so omogočili zanesljivo razvrščanje zvočnih signalov, kar omogoča identifikacijo delovnega stanja strojev in zaznavanje odstopanj v procesu. Ta raziskava potrjuje, da ima razvrščanje zvoka s pomočjo algoritmov nenadzorovanega strojnega učenja potencial za izboljšanje spremljanja v realnem času ter optimizacijo proizvodnih procesov, kar lahko bistveno pripomore k večji učinkovitosti in zmanjšanju stroškov proizvodnje.

Language:Slovenian
Keywords:klasifikacija industrijskega zvoka, nenadzorovano učenje, akustika, k-means, zvočna usmerjenost, spremljanje v realnem času
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2024
Number of pages:XX, 61 str.
PID:20.500.12556/RUL-166109 This link opens in a new window
UDC:658.5:534:004.8(043.2)
COBISS.SI-ID:221157891 This link opens in a new window
Publication date in RUL:20.12.2024
Views:485
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Classification of sound signals in production using the k-means unsupervised machine learning method
Abstract:
In modern competitive industrial environments, maintaining optimal efficiency and quality is of crucial importance. Traditional methods often rely on visual inspections or sensor-based monitoring, which may not detect subtle changes or provide real-time insights. In this thesis, a methodology was developed to improve real-time monitoring and evaluation of manufacturing processes using unsupervised machine learning algorithms, specifically the k-means algorithm, for the classification and analysis of acoustic data from production environments. The methodology includes identifying key acoustic features such as directionality, frequency spectrum properties, and statistical signal descriptors at multiple time constants, and using these features to train the k-means algorithm. The classification results enabled reliable categorization of acoustic signals, allowing for the identification of machine operating states and the detection of process deviations. This research confirms that clustering acoustic data using unsupervised machine learning algorithms has the potential to enhance real-time monitoring and optimize manufacturing processes, which can significantly contribute to increased efficiency and reduced production costs.

Keywords:industrial sound classification, unsupervised learning, acoustics, principal component analysis, sound directionality, real-time process monitoring

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back