Details

Zapolnjevanje vrzeli v časovnih vrstah vegetacijskih indeksov z uporabo difuzijskih modelov
ID Lovenjak, Klemen (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Račič, Matej (Comentor)

.pdfPDF - Presentation file, Download (7,74 MB)
MD5: 8C22B750144E8E506772BB116F0A7EBE

Abstract
V magistrski nalogi preučujemo pogojeno generiranje manjkajočih podatkov v časovnih vrstah. Osredotočili smo se na problem škrbavih časovnih vrst NDVI. Ta indeks v našem primeru temelji na podatkih optičnih senzorjev misije Sentinel-2, zato je močno občutljiv na stanje atmosfere. Razvili smo metodo za imputacijo manjkajočih vrednosti, ki z uporabo radarskih podob misije Sentinel-1 naslavlja omejitve časovnih vrst NDVI. Uporabili smo pogojeni difuzijski model. Model smo učili na podatkih za kmetijska zemljišča v obdobju enega vegetacijskega cikla. Pristop se je izkazal za obetavnega. Rezultati kažejo, da model presega rezultate osnovne metode interpolacije in kaže na dejanske trende, ki jih z osnovnimi metodami ne moremo zaznati. Kljub temu pa se pojavljajo tudi neintuitivne vrednosti, ki so morda posledica občutljivosti radarskih podatkov na druge vplive.

Language:Slovenian
Keywords:globoko učenje, pogojeni generativni modeli, difuzijski modeli, umetno odprtinski radar, vegetacijski indeksi, časovne vrste, imputacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-166033 This link opens in a new window
COBISS.SI-ID:220000515 This link opens in a new window
Publication date in RUL:18.12.2024
Views:588
Downloads:121
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Gap-filing vegatation index timeseries using diffusion models
Abstract:
In this master's thesis we study conditional generation of missing data in time series. We focused on the problem of gappy NDVI time series. This index is in our case based on the data from the optical sensors of the Sentinel-2 mission, and is therefore highly sensitive to atmospheric conditions. We developed a method for imputing missing values, leveraging the radar imagery of the Sentinel-1 mission to address the limitations of NDVI time series. We employed a conditional diffusion model. The model was trained on data for agricultural parcels spanning over one vegetation cycle. The approach proved to be promising. The results demonstrate that the model outperforms the basic interpolation methods and demonstrates actual trends that are left undetected by basic interpolation methods. Despite that, a number of cases exhibit non-intuitive values, possibly due to the sensitivity of radar data to other influeces.

Keywords:deep learning, conditional generative models, diffusion models, synthetic-aperture radar, vegetation indices, time-series, imputation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back