Details

Radiomika za učinkovitejšo analizo preživetja bolnikov z glioblastomom
ID Petrišič, Miha (Author), ID Sadikov, Aleksander (Mentor) More about this mentor... This link opens in a new window, ID BREZNIK, BARBARA (Comentor), ID Novak, Metka (Comentor)

.pdfPDF - Presentation file, Download (14,51 MB)
MD5: 376F5874E4542E2FF3E6C0D3DD2E9D4D

Abstract
Glioblastom (GBM) je najpogostejša oblika primarnega možganskega tumorja, pri katerem mediana preživetja bolnikov kljub zdravljenju znaša 15 mesecev [1]. Slikanje z magnetno resonanco (MRI) je prva izbira za diagnozo možganskih tumorjev, s pomočjo katere radiologi prepoznavajo različna tumorska stanja, agresivnost GBM in je ključna za načrtovanje operacije. V sklopu študije so bili uporabljeni pristopi radiomike kot način pridobivanja slikovnih značilk za natančnejšo napoved prognoze in boljše razumevanje GBM. Razvili smo orodje, ki na podlagi slik MRI bolnikov z GBM segmentira tumor na različne podregije in pridobi značilke na podlagi vrednosti intenzivnosti znotraj tumorja, morfološke značilke ter značilke, ki opisujejo njegovo lokacijo. Z orodjem je bilo analiziranih 52 bolnikov, pri čemer je bil cilj uporaba radiomskih značilk v kombinaciji s splošnimi, kliničnimi in molekularnimi podatki. Rezultati študije so pokazali, da so tumorji pri bolnikih s krajšim preživetjem večji po površini, prostornini in dolžinah osi obsegajoče elipsoide, imajo nepravilnejšo obliko in se pogosteje nahajajo globlje v možganih. Na podlagi Coxove regresije je bil izdelan uspešen napovedni model (konkordanca=0,818), ki s petimi značilkami povzema preživetje bolnikov v raziskovalni skupini. Model je za statistično pomembna pozitivna napovedovalca preživetja (p-vrednost < 0,001) identificiral sferičnost peritumorskega edema in terapijo z ionizirajočim obsevanjem ter temozolomidom. Ploščatost nekrotične podregije prav tako vpliva pozitivno, medtem ko večje vrednosti izraženosti gena NOTCH in prekrivanje tumorskega tkiva, pokontrastno ojačenega z gadolinijem, s putamenom negativno vplivata na preživetje bolnikov.

Language:Slovenian
Keywords:glioblastom, radiomika, slikanje z magnetno resonanco, analiza preživetja
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-165997 This link opens in a new window
COBISS.SI-ID:219991555 This link opens in a new window
Publication date in RUL:16.12.2024
Views:619
Downloads:106
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Radiomics for improved survival analysis of glioblastoma patients
Abstract:
Glioblastoma (GBM) is the most common type of primary brain tumor, with a median survival of 15 months, even with treatment [1]. Magnetic resonance imaging (MRI) is the first choice for diagnosing brain tumors, helping radiologists identify various tumor states, the aggressiveness of GBM, and is crucial for planning tumor resection. In this study, radiomics was used to identify imaging features for more accurate prognosis prediction and a better understanding of GBM. We developed a tool that segments the tumor into different subregions based on MRI images of GBM patients and extracts features based on intensity values within the tumor, morphological characteristics, and features describing its location. The tool was used to analyze 52 patients, with the goal of combining radiomic features with general, clinical, and molecular data. The results of the study showed that tumors in patients with shorter survival are larger in surface area, volume, and axis lengths of the enclosing ellipsoid, are more irregularly shaped, and are more often located deeper in the brain. Based on Cox regression, a successful predictive model was developed (concordance=0.818), which uses five features to summarize patient survival in the study cohort. The model identified the sphericity of peritumoral edema and therapy with ionizing radiation and temozolomide as statistically significant positive survival predictors (p-value < 0.001). The flatness of the necrotic subregion also positively influenced survival, while higher expression levels of the NOTCH gene and the overlap of gadolinium-enhancing tumor, with the putamen negatively influenced patient survival.

Keywords:Glioblastoma, radiomics, magnetic resonance imaging, survival analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back