Details

Optimizacija logističnega odvoza na usmerjenih grafih pametnih mest
ID Bastl, Miha (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (19,14 MB)
MD5: 8DBA8E7F1505C4A7E6B81B53FB0C568F

Abstract
Z razvojem tehnologij interneta stvari (IoT) postaja vse bolj izvedljivo bistveno izboljšati enega izmed najpogostejših kombinatoričnih optimizacijskih problemov --- problem usmerjanja vozil s kapacitetami (CVRP). CVRP predstavlja temelj skoraj vsake logistične naloge. V tem delu integriramo novo tehnologijo, "pametne posode", z uveljavljenimi optimizacijskimi algoritmi. Zbrali smo GIS podatke pametnih posod obsežnega območja Slovenije za konstrukcijo asimetričnih usmerjenih grafov, ki modelirajo potencialno "pametno mesto". Ta pristop omogoča bolj realistično predstavitev izzivov mestnega odvoza, ki jih odražajo enosmerne ulice in raznolike prometne razmere, značilne za urbana okolja. Naše delo se osredotoča na tedensko ponavljajočo se nalogo odvoza posod, pri čemer hitrosti polnjenja zabojnikov od povprečja odstopajo za do približno 1,5 dneva. To periodično ponavljanje odvoza doda plast kompleksnosti optimizacijskemu problemu. Naši rezultati kažejo zmanjšanje stroškov trenutnega optimuma za približno 6,3%. S pravilno uporabo lahko ta tehnologija prinese pomembne ekonomske in časovne prihranke, hkrati pa zmanjšuje ekološki vpliv.

Language:Slovenian
Keywords:optimizacija grafov, optimizacija odvoza, pametna mesta
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-165884 This link opens in a new window
COBISS.SI-ID:218883843 This link opens in a new window
Publication date in RUL:12.12.2024
Views:430
Downloads:85
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The optimization of logistical transport in directed graphs of smart cities
Abstract:
With the advent of IoT technologies, it is becoming increasingly feasible to significantly improve the solutions of one of the most common combinatorial optimization problems—the Capacitated Vehicle Routing Problem (CVRP). CVRP is a cornerstone in virtually every logistical task. In this study, we integrate a novel technology, "smart bins", with established optimization algorithms. We collected GIS data on smart bins across a substantial region of Slovenia to construct asymmetric directed graphs, which model a potential "smart city". This approach allows for a more realistic representation of urban routing challenges, reflecting the one-way streets and varied traffic conditions typical in urban environments. Our case study focuses on a weekly recurring bin collection task, with the bin filling speeds deviating by up to approximately 1.5 days from the mean. This periodic nature of the task adds a layer of complexity to the optimization problem. Our results show a reduction in the costs of the current optimum by around 6.3%. Properly utilized, this technology can yield significant cost and time savings while reducing ecological impact.

Keywords:graph optimisation, optimisation of collection management, smart city

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back