Details

Uporaba zveznega učenja za napoved prekinljivosti v mobilnem računalništvu
ID Kocjančič, Anže (Author), ID Pejović, Veljko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,35 MB)
MD5: 4A63BF4D8648D6E1714C2B5BB8DC37C1

Abstract
Diplomska naloga obravnava izziv ugotavljanja primernih trenutkov za dostavo obvestil na mobilne naprave. Klasični modeli strojnega učenja, ki uporabljajo podatke o uporabnikovi lokaciji, aktivnosti in stanju naprave, lahko učinkovito napovedujejo te trenutke, vendar zahtevajo pošiljanje podatkov v oblak, kar ogroža zasebnost. V tej nalogi uporabimo zvezno učenje, ki omogoča grajenje modela na distribuiran način, brez pošiljanja osebnih podatkov na strežnik. Razvili smo Android aplikacijo z ogrodjem TensorFlow Lite in Flower, ki omogoča učenje na mobilni napravi. Testiranje na dejanskih mobilnih napravah je pokazalo, da zvezno učenje omogoča učinkovito in zasebno napovedovanje prekinljivosti uporabnika.

Language:Slovenian
Keywords:zvezno učenje, android, strojno učenje, flower
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-165319 This link opens in a new window
COBISS.SI-ID:218107651 This link opens in a new window
Publication date in RUL:02.12.2024
Views:422
Downloads:106
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Federated learning for interruptiblity inference in mobile computing
Abstract:
The thesis describes the challenge of determining optimal moments for delivering notifications to mobile devices. Traditional machine learning models, which use data on user location, activity, and device status, can effectively predict these moments but require data to be sent to the cloud, which compromises privacy. In this thesis, we use federated learning, which enables model building in a distributed way without sending personal data to a server. We developed an Android application using the TensorFlow Lite and Flower frameworks, enabling on-device learning. Testing on real mobile devices demonstrated that federated learning allows for effective and privacy-preserving prediction of user interruptibility.

Keywords:federated learning, android, machine learning, flower

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back