Details

Ensuring Face Consistency and Image Naturalness in Multi-Person Image Generation with Diffusion Models
ID Žakelj, Mark (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,01 MB)
MD5: C9A9E18D1D5E92A462CABB7AED4DB451

Abstract
Diffusion models have been widely used for consistent subject generation, but current methods are mostly focused on consistency of a single subject in an image, while consistent multi-subject generation remains an unexplored problem. We propose a method that combines diffusion models with IP-Adapters for facial consistency, ControlNet for ensuring image variability, and facial inpainting for improved facial quality and consistency. We introduce our own module for facial matching, which improves prompt adherence in cases where the age of the subjects varies significantly or their gender is different. Our method produces images of great quality with facial consistency limited only by the underlying IP-Adapter methods.

Language:English
Keywords:Diffusion models, Image generation, Facial consistency
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-165288 This link opens in a new window
COBISS.SI-ID:218108675 This link opens in a new window
Publication date in RUL:29.11.2024
Views:422
Downloads:152
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Zagotavljanje doslednosti obrazov in naravnosti slik pri generiranju večih oseb z difuzijskimi modeli
Abstract:
Difuzijski modeli se pogosto uporabljajo za dosledno generiranje subjektov, vendar so trenutne metode večinoma osredotočene na doslednost enega subjekta na sliki, medtem ko dosledno generiranje več subjektov ostaja neraziskan problem. Predlagamo metodo, ki združuje difuzijske modele z IP-Adapterji za doslednost obrazov, ControlNet-om za zagotavljanje variabilnosti slik ter Face Inpaint-om za izboljšanje kakovosti in doslednosti obraza. Uvedli smo tudi lasten modul za ujemanje obrazov, ki izboljša ujemanje slik in pripadajočega teksta v primerih, ko se starost referenčnih subjektov bistveno razlikuje ali je spol subjektov različen. Naša metoda generira slike visoke kakovosti, kjer je skladnost obrazov omejena zgolj z uporabljenimi metodami IP-Adapter.

Keywords:Difuzijski modeli, Generiranje slik, Doslednost obrazov

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back