Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Generative prediction of basketball gameplay
ID
Hafner, Andrej
(
Author
),
ID
Skočaj, Danijel
(
Mentor
)
More about this mentor...
PDF - Presentation file. The content of the document unavailable until 18.05.2025.
MD5: 6134BB388502C265646DFFC1AB3A7EE5
Image galllery
Abstract
Advancements in data analysis and machine learning have significantly impacted sports analytics, particularly in basketball, where detailed tracking data has enhanced understanding of player movements and game dynamics. However, existing models often focus on short-term trajectory predictions and omit key in-game events like shots, passes, and rebounds, limiting comprehensive game modeling. This thesis introduces a novel approach to generative modeling of basketball gameplay. By encoding games as sequences of game states through a basketball-specific grammar, we apply Transformer architectures to model gameplay similarly to language processing. We introduce Domain-Informed Decoding (DID) with output logits masking, integrating basketball rules directly into the decoding process to ensure coherent sequence generation. Additionally, we develop a method for quantifying generative realism by comparing key metrics between real and generated data. Our approach simulates entire basketball games, incorporating detailed player and ball movements with essential in-game events. Evaluations demonstrate that our model captures statistical properties of actual games and generates diverse, plausible gameplay scenarios, offering deeper insights into game mechanics and enhancing strategic planning in sports analytics.
Language:
English
Keywords:
multi-agent behaviour prediction
,
generative modeling
,
machine learning in sports
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-165148
COBISS.SI-ID:
217916931
Publication date in RUL:
25.11.2024
Views:
203
Downloads:
0
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
HAFNER, Andrej, 2024,
Generative prediction of basketball gameplay
[online]. Master’s thesis. [Accessed 8 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=165148
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Generativno napovedovanje poteka igre košarke
Abstract:
Napredki v analizi podatkov in strojnem učenju so bistveno vplivali na športno analitiko, zlasti v košarki, kjer podrobni sledilni podatki omogočajo natančno razumevanje gibanja igralcev in dinamike igre. Obstoječi modeli se pogosto osredotočajo na kratkoročne napovedi gibanja in izpuščajo ključne dogodke v igri, kot so meti, podaje in skoki, kar omejuje celovito modeliranje igre. V tej magistrski nalogi predstavljamo nov pristop k generativnemu modeliranju košarkarske igre. Košarkarsko igro kodiramo kot zaporedje stanj igre s pomočjo košarki specifične gramatike, kar omogoča uporabo arhitekture Transformer za modeliranje igre na podoben način kot modeliranje jezika. Uvedemo domensko informirano dekodiranje (DID) z maskiranjem izhodnih vrednosti, ki vključi košarkarska pravila neposredno v proces dekodiranja za generiranje skladnih zaporedij žetonov. Poleg tega razvijemo metodo za vrednotenje generativnega realizma z primerjavo ključnih metrik med realnimi in generiranimi igrami. Naš pristop simulira celotne košarkarske tekme, kar vključuje podrobna gibanja igralcev in žoge s ključnimi dogodki v igri. Vrednotenje pokaže, da naš model zajame statistične lastnosti dejanskih iger in generira raznolike in verjetne scenarije, kar omogoča globlji vpogled v mehaniko igre ter izboljšuje strateško načrtovanje v športni analitiki.
Keywords:
napovedovanje večagentnega vedenja
,
generativno modeliranje
,
strojno učenje v športu
Similar documents
Similar works from RUL:
Helping a child with attention deficit hyperactivity disorder
Nurse's role in child with retinoblastoma
Care of oral cavity by child
ǂThe ǂimpact of vegetarian diet on children's health
ǂThe ǂquality of life of children with asthma
Similar works from other Slovenian collections:
Cognitive functions in children with attention-deficit/hyperactivity disorder
Back