izpis_h1_title_alt

Optimizacija metode razbijanja gesel z uporabo kontekstualnih informacij in umetne inteligence
ID Prajnc, Martin (Author), ID Modic, David (Mentor) More about this mentor... This link opens in a new window, ID Prešeren, Grega (Comentor)

.pdfPDF - Presentation file, Download (530,11 KB)
MD5: 84E36A3D2B791B93F1D3E0A460C5FF50

Abstract
Gesla so že več kot 50 let prevladujoča metoda za preverjanje pristnosti, trend, ki kaže, da bo še dolgo prisoten. So ključni del varnosti digitalnih oseb, sistemov in kritičnih podatkov, vendar pogosto predstavljajo najšibkejšo točko pri vstopu v digitalne sisteme. Gesla pogosto odražajo osebne značilnosti in preference svojih ustvarjalcev, kar omogoča zlonamernim akterjem, da jih izkoristijo z uporabo razpoložljivih kontekstualnih informacij o ustvarjalcu gesla. Nedavne raziskave so pokazale, da lahko posebej prilagojeni seznami gesel, oblikovani na podlagi teh kontekstualnih informacij, izboljšajo učinkovitost metod za razbijanje gesel. V magistrski nalogi predstavimo optimizacijo metode za razbijanje gesel z uporabo kontekstualnih informacij. Uporabimo inovativno metodo za sestavo kontekstualnega slovarja gesel, da bi povečali verjetnost hitrega uspeha pri razbijanju gesel. Pri tem postopku se poslužimo uporabe velikih jezikovnih modelov, z namenom, da bi optimizirali generiranje gesel z uporabo kontekstualnih slovarjev. Predstavimo model CtxPassGPT, ki temelji na avto-regresivnem modelu GPT-2 in uporablja kontekstne besede za generiranje gesel. Potrdimo, da uporaba kontekstualnih informacij, specifičnih za določeno področje, v povezavi z umetno inteligenco, lahko izboljša uspešnost napadov. Eksperimentalni rezultati so pokazali, da je metoda ctxPassGPT, zlasti v kombinaciji z naborom gesel Ignis-10M, učinkovita pri ugibanju gesel, predvsem tistih z višjo oceno moči. Prispevek poudarja potencial kombinacije jezikovnih modelov in kontekstualnih informacij pri izboljšanju učinkovitosti slovarskih napadov, kar ima posledice za varnost gesel med drugim pa tudi za razvoj novih metod na tem področju.

Language:Slovenian
Keywords:kibernetska varnost, informacijska varnost, umetna inteligenca, transformer model, ugibanje gesel, razbijanje gesel
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2024
Publication date in RUL:15.11.2024
Views:31
Downloads:3
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Optimization of password cracking method using contextual information and artificial intelligence
Abstract:
Passwords have been the dominant method of authentication for more than 50 years, a trend that looks set to continue for a long time to come. They are a key part of the security of individuals, systems and critical data, but often represent the weakest point of entry into digital systems. Passwords often reflect the personal characteristics and preferences of their creators, allowing malicious actors to exploit them using available contextual information about the password creator. Recent research has shown that tailored password lists, created on the basis of this contextual information, can significantly improve the effectiveness of password cracking methods. In this master thesis, we present the optimization of a password cracking method using contextual information. We apply an innovative methodology to construct a contextual dictionary of password rankings in order to increase the probability of early success in password cracking. We make use of large-scale language models in this process in order to optimize password generation using contextual dictionaries. We present the CtxPassGPT model, which is based on the auto-regressive GPT-2 model and uses contextual words to generate passwords. Our hypothesis was that the use of domain-specific contextual information in conjunction with artificial intelligence can improve the performance of attacks. Experimental results showed that the ctxPassGPT method, especially when combined with the Ignis-10M password set, is very effective in guessing passwords, especially those with higher strength scores. This paper highlights the potential of combining language models and contextual information in improving the performance of dictionary attacks, which has important implications for password security and the development of new methods in this field.

Keywords:cybersecurity, information security, artificial intelligence, transformer, password guessing, password cracking

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back