Details

Exploring energy-efficient key word spotting on Android using network compression techniques and a model selection algorithm
ID ŠTIMEC, GAŠPER (Author), ID Machidon, Octavian Mihai (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,40 MB)
MD5: 51735BC9CB546326DEA0AD305AEACB99

Abstract
This thesis explores the development of an Android application for real-time keyword spotting, utilizing neural network based models deployed locally on the device. A central aspect of this work is the implementation of an algorithm that selects the most appropriate level of model complexity based on internal factors such as the device’s battery level and previous inference outcomes. Three models used were created using varying architecture designs and post-training quantization. The application captures audio through the device’s microphone, processes it to extract MFCC features, selects the model and performs classification, ensuring that the processing pipeline remains consistent with the model’s training conditions. Beyond the application itself, this thesis aims to provide insights into the performance of the adaptive complexity algorithm. It evaluates the trade-offs between energy consumption and classification accuracy across different app configurations: using a single model versus employing the adaptive algorithm.

Language:English
Keywords:keyword spotting, neural network, MFCC
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-164830 This link opens in a new window
COBISS.SI-ID:214137859 This link opens in a new window
Publication date in RUL:13.11.2024
Views:415
Downloads:126
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Raziskovanje energetsko učinkovitega zaznavanja ključnih besed na Androidu z uporabo kompresijskih tehnik in algoritma za izbiro modela
Abstract:
Ta diplomska naloga predstavlja izvedbo Android aplikacije, namenjene prepoznavanju ključnih besed v realnem času z uporabo TensorFlow Lite modelov, nameščenih lokalno na napravi. Poudarek je na implementaciji algoritma, ki izbere najprimernejši nivo kompleksnosti klasifijkacijskega modela na podlagi notranjih parametrov, kot so raven baterije naprave in prejšnji rezultati sklepanja. Omenjeni trije modeli so bili ustvarjeni z uporabo različnih arhitektur nevronskih mrež in s kvantizacijo. Aplikacija zajema zvok preko mikrofona naprave, ga obdela za pridobitev MFCC značilk, izbere model in nato izvaja klasifikacijo za prepoznavanje ključnih besed. Poleg same aplikacije, se teza posveča tudi evalvaciji delovanja algoritma za prilagodljivo kompleksnos in oceni kompromis med porabo energije in natančnostjo klasifikacije pri različnih konfiguracijah aplikacije: uporaba enega samega modela v primerjavi z uporabo algoritma.

Keywords:zaznavanje ključnih besed, nevronska mreža, MFCC

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back