izpis_h1_title_alt

Primerjava metod diskretizacije za gradnjo povezovalnih pravil
ID Barašin, Irina (Author), ID Vračar, Petar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,66 MB)
MD5: 4FE5C3F171FC6FF32C6625C3A3348334

Abstract
V diplomskem delu raziskujemo uporabo različnih metod diskretizacije v kombinaciji z algoritmoma Apriori in FP-growth za rudarjenje povezovalnih pravil na umetnih in realnih podatkovnih množicah. Poseben poudarek je bil namenjen preučevanju vpliva diskretizacije numeričnih atributov na kakovost in interpretabilnost generiranih pravil, z uporabo različnih mer zanimivosti, kot so chi kvadrat, dvig, priklic in napovedna točnost. Analiza je pokazala, da je metoda relativne nenadzorovane diskretizacije (RUDE) učinkovita pri prepoznavanju pravil, ki vključujejo diskretizirane atribute, medtem ko so ostale predvsem odkrivale splošno znana pravila, sestavljena iz kategoričnih atributov. Poleg tega je bilo ugotovljeno, da kombinacija metod diskretizacije in mer zanimivosti pomembno vpliva na ocene pravil, tudi tistih, ki vključujejo zgolj kategorične atribute. To delo prispeva k razumevanju vpliva diskretizacije na rudarjenje pravil in odpira možnosti za nadaljnje raziskave na tem področju.

Language:Slovenian
Keywords:strojno učenje, povezovalna pravila, nenadzorovano strojno učenje, diskretizacija, podatkovna znanost
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-164828 This link opens in a new window
Publication date in RUL:13.11.2024
Views:36
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of Discretization Techniques for Mining Association Rules
Abstract:
In thesis we explore the application of various discretization methods combined with the Apriori and FP-growth algorithms for mining association rules on artificial and real datasets. Special emphasis was placed on examining the impact of discretizing numerical attributes on the quality and interpretability of the generated rules, using different interestingness measures such as chi kvadrat, lift, recall, and accuracy. The analysis revealed that the Relative Unsupervised Discretization (RUDE) method proved effective in identifying rules involving discretized attributes, while other primarily uncovered well-known, general rules made of categorical atributes. Additionally, it was found that the combination of discretization methods and interestingness metrics significantly influenced the evaluations of rules, even those involving purely categorical attributes. This work contributes to understanding the impact of discretization on rule mining and opens up possibilities for future research in this area.

Keywords:machine learning, association rules, unsupervised machine learning, discretization, data science

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back