izpis_h1_title_alt

Napovedovanje raka na mamografskih slikah
ID Bažec, Matija (Author), ID Emeršič, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Oblak, Tim (Comentor)

.pdfPDF - Presentation file, Download (3,20 MB)
MD5: 557853E843F38582488F94C5EB2711AE

Abstract
Rak dojk je velika zdravstvena skrb. Pojav globokega učenja uvaja možnosti za pomoč medicinskemu osebju v boju proti bolezni. V tem delu smo uporabili metode globokega učenja za napovedovanje prisotnosti raka dojke pri bolnicah s tumorskimi lezijami. Razvili smo cevovod, ki vključuje model segmentacije in klasifikacije. Prvi služi za določitev lokacije lezije, drugi pa za ugotavljanje, ali je lezija benigna ali maligna. V sklopu diplomske naloge smo se skušali približati zmogljivosti vodilnih metod na področju in svoj pristop oceniti na lastni podatkovni zbirki mamografskih slik. Kljub dobrim preliminarnim rezultatom klasifikacijskega modela pa na testih celotnega cevovoda nismo dosegli želenih rezultatov. Razlog za to je segmentacijski model, ki mu na vhodni sliki ni uspelo prepoznati večjega števila potencialnih lezij.

Language:Slovenian
Keywords:Globoko učenje, rak dojke, segmentacija, klasifikacija
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-164824 This link opens in a new window
Publication date in RUL:13.11.2024
Views:50
Downloads:1
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of cancer on mammographic images
Abstract:
Breast cancer is a major medical concern for people everywhere. The advent of deep learning introduces options to assist medical personnel in combating the disease. In this work we used deep learning methods to predict the presence of breast cancer on patients with tumorous lesions. We develop a pipeline that includes a segmentation and classification model. The first determines the location of the lesion and the second determines weather the lesion is benign or malign. Our goal was to reach the performance of contemporary models in the field and test our approach on a custom dataset of mammographic images. Despite initial success with our classification model, the evaluation of the final pipeline did not achieve the desired results. The reason for this is the segmentation model, which failed to detect several potential lesions in the input image.

Keywords:deep learning, breast cancer, classification, segmentation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back