Details

Uporaba analiznih metod v kombinaciji z metodo glavnih osi pri določanju lastnosti vina Chardonnay
ID Metelko, Nika (Author), ID Marolt, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,00 MB)
MD5: FD18B628D48A3688E6E95E92FF0D1E8E

Abstract
Vino Chardonnay izvira iz Burgundije in je ena najbolj razširjenih sort v svetovnem merilu. Vino sestavlja mešanica več spojin, kjer vsaka komponenta ali kombinacija le-teh vpliva na lastnosti vina. Slednje spojine so del grozdja, produkt fermentacije kvasovk in posledica dolgotrajnega zorenja ter skladiščenja. Glavni sestavini vina sta voda in etanol, ostale prisotne komponente pa so sladkorji, kisline, drugi alkoholi in fenoli, ki vplivajo na kislost, sladkost, barvo, okus in senzoričen profil vina. Cilj mojega magistrskega dela je bil, da raziščem, kako koncentracije različnih analitov medsebojno vplivajo na lastnosti vina. Pri tem sem uporabila metodo glavnih osi (PCA), kjer sem raziskovala povezave med izbranimi 12 organskimi kislinami, 5 anorganskimi ioni in 19 elementi. V sklopu svojega magistrskega dela sem razvila metodo za ločevanje 17 izbranih analitov z ionsko kromatografijo (IC) z detektorjem na električno prevodnost in analizirala 79 vzorcev vina Chardonnay. Z induktivno skopljeno plazmo z optičnim emisijskim spektrometrom (ICP-OES) pa sem določila 36 elementov, od tega je bilo 17 elementov pod mejo zaznave. PCA analize sem izvedla glede na različne karakteristike oz. osnovne lastnosti vzorcev vina, in sicer: i) pokrajina pridelave, ii) sladkorna stopnja in iii) kakovost. Do najboljšega grupiranja podatkov glede na slovenske vinorodne dežele je prišlo pri mikroelementih (13 elementih), določenih z ICP-OES. Vina s Primorske in Podravja so se grupirala v 2 skupini in med seboj ločila, kar pripisujem različni sestavital, različnemu podnebju in drugačnemu načinu pridelave vina. Vina iz Posavja pa so se delno prekrivala z vini s Primorske in iz Podravja. Zanimivo je do najboljše ločbe in grupiranja slovenskih vin glede na sladkorno stopnjo prišlo pri 36 analitih, določenih z IC in ICP-OES. Polsuha in suha vina so se grupirala v 2 skupini. Vzorci sladkih in polsladkih vin so se prekrivali oz. so bili razpršeni med suha in polsuha vina. Najboljša ločitev in grupiranje vseh vin (slovenskih in tujih) glede na kakovost vina je bilo pri vseh analitih (19 elementih), določenih z ICP-OES. Kakovostna, vrhunska in vrhunska peneča vina so se grupirala v 3 skupine, med seboj pa so se prekrivala kakovostna in vrhunska vina. Za boljše rezultate prihodnjih raziskav predlagam določitev koncentracije večjega števila analitov, več vzorcev vina, uporaba drugih separacijskih kolon in dveh mobilnih faz pri ionski kromatografiji in uporaba ICP-MS namesto ICP-OES zaradi nižje meje zaznave.

Language:Slovenian
Keywords:vino, ionska kromatografija, ICP-OES, strojno učenje, metoda glavnih osi
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2024
PID:20.500.12556/RUL-164730 This link opens in a new window
COBISS.SI-ID:220197891 This link opens in a new window
Publication date in RUL:08.11.2024
Views:598
Downloads:163
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The use of analytical methods in combination with principal component analysis to determine characteristics of wine Chardonnay
Abstract:
Chardonnay wine originates from Burgundy and is one of the most widely spread varieties worldwide. The wine consists of a mixture of various compounds, where each component or their combination affects the properties of the wine. These compounds are part of the grape, products of yeast fermentation, and a result of prolonged aging and storage. The main components of wine are water and ethanol, while other present components include sugars, acids, other alcohols, and phenols, which influence the acidity, sweetness, colour, taste and sensory profile of the wine. The aim of my master’s thesis was to explore how the concentrations of different analytes mutually affect the properties of the wine. For this purpose, Principal Component Analysis (PCA) was used, and the connections between selected 12 organic acids, 5 inorganic ions and 19 elements was evaluated. As a part of my master’s thesis, I developed a method for separating 17 selected analytes using ion chromatography (IC) with a conductivity detector and analysed 79 Chardonnay samples. Using inductively coupled plasma with optical emission spectrometry (ICP-OES), I determined 36 elements, however, 17 of them were below the detection limit. PCA analyses based on different wine characteristics was conducted, including i) wine production region, ii) sugar level, and iii) wine quality. The best grouping of data according to Slovenian wine regions was achieved with microelements (13 elements) determined by ICP-OES. Wines from Primorska and Podravje grouped into two distinguished groups, which can be attributed to different soil composition, climate, and wine production methods. Wines from Posavje partially overlapped with wines from Primorska in Podravje. Interestingly, the best separation and grouping of the Slovenian wines according to the sugar level was achieved with 36 analytes determined by IC and ICP-OES. Semi-dry and dry wines were grouped into two groups. The samples of sweet and semi-sweet wines were overlapped or scattered among dry and semi-dry wines. The best separation and grouping of all wine samples (Slovenian and foreign) according to wine quality was achieved based on all analytes (19 elements) determined by ICP-OES. Quality, premium, and premium sparkling wines grouped into three groups, with overlapping quality and premium wines. For better results in future research, I suggest determining the concentration of a larger number of analytes, more wine samples, use of different separation columns and two mobile phases in ion chromatography and using ICP-MS instead of ICP-OES due to lower limits of detection.

Keywords:Wine, Ion chromatography, ICP-OES, Machine Learning, Principal Component Analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back