izpis_h1_title_alt

Knowledge graph-primed deep learning to identify condition-specific gene importance
ID Kert, Aleš (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Robyn Bleker, Carissa (Comentor), ID Zrimec, Jan (Comentor)

.pdfPDF - Presentation file, Download (4,14 MB)
MD5: 8352B8A10714192D08606D4B5BF6D669

Abstract
In this thesis, we sought to incorporate prior knowledge to improve the interpretability of deep learning models trained on gene expression data. We created a pipeline consisting of batch effect removal using a deep learning approach, training the prediction model, and the interpretation of the model using guided backpropagation. The prediction model architecture was con- structed using prior knowledge on molecular interactions. In genes relevant to tissue types and perturbation groups, the baseline achieved an AUC score of 0.629 and 0.597, respectively. The proposed CKN-based models achieved 18.6% and 23.1% relative improvement, with AUC scores of 0.746 and 0.735, respectively.

Language:English
Keywords:neural networks, gene expression, interaction networks, knowledge network, prior knowledge
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-164587 This link opens in a new window
Publication date in RUL:04.11.2024
Views:53
Downloads:23
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Na grafu znanja osnovano globoko učenje za identifikacijo pogojno-specifične pomembnosti genov
Abstract:
Cilj naloge je bila integracija biološkega predznanja z namenom izboljšave razložljivosti modelov globokega učenja, naučenih na podatkih o genskem izražanju. Razvili smo računski cevovod, sestavljen iz odstranjevanja odstopanja serije, učenja napovedovalnega modela in interpretacije tega modela. Arhitektura napovedovalnega modela je bila zasnovana na podlagi predznanja o molekulskih interakcijah. Razložljivost modela je bila primerjana z razložljivostjo modela, naučenega brez predznanja. Neinformirani modeli so pri genih, pomembnih za tkiva in stresorje, dosegli oceni AUC 0,629 in 0,597, v tem vrstnem redu. Predlagani modeli, ki uporabljajo predznanje, pa so dosegli 18,6 % ter 23,1 % relativno izboljšavo rezultatov, z ocenama AUC 0,746 in 0,735.

Keywords:nevronske mreže, ekspresija genov, omrežja interakcij, mreža znanja, predznanje

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back