Details

Analiza komitentov komercialne banke in napoved njihovega prehoda v stanje neplačila
ID Candellari, Nikolaj (Author), ID Istenič, Tanja (Mentor) More about this mentor... This link opens in a new window, ID Toman, Aleš (Comentor)

.pdfPDF - Presentation file, Download (2,22 MB)
MD5: 93363B6B73FA613B2C76BBA217A8285D

Abstract
Osnovni cilj magistrskega dela je, da pripravimo in ovrednotimo model, s katerim lahko izbrani komercialni banki predčasno (npr. kakšen mesec prej) sporočimo napoved, da bo posamezen komitent prešel v stanje neplačila. Na ta način se lahko banka ob napovedi prehoda pripravi na posredovanje oz. iskanje rešitev za komitenta in prilagoditev odplačevanja njegovih obveznosti. Namesto osredotočanja na posamezni kredit in njegovo tveganje (kar je v praksi pogosteje) se v magistrskem delu osredotočamo na celostno obravnavo komitenta pri banki, saj s plačili zamuja komitent in ne posamezni kredit. Za potrebe naše analize zato precej časa posvetimo pripravi podatkov, pri čemer sta najpomembnejša koraka pretvorba panelnih podatkov v zbirno obliko in izbira časa modeliranja. Za vsakega komitenta poleg informacij o njegovih kreditih uporabimo še informacije o stanju na njegovih bančnih računih in izbrane demografske spremenljivke, s katerimi razpolaga komercialna banka in je dovolila njihovo uporabo. Na tako pripravljenih podatkih smo razvili klasifikacijska modela na podlagi logistične regresije in nevronskih mrež, ki kot enoto obravnavata posameznega komitenta in za izbrani časovni interval v prihodnosti (npr. en, dva ali tri mesece) napovesta verjetnost prehoda oz. neprehoda komitenta v stanje neplačila. Pri primerjavi rezultatov obeh modelov se kot boljši izkaže model nevronskih mrež, vendar je precej manj zanesljiv kot logistična regresija. Razlog za manjšo zanesljivost je ta, da model nevronski mrež ob večkratnem učenju na istih podatkih v njih prepozna zelo različne vzorce, zaradi česar težko zaupamo njihovem rezultatu.

Language:Slovenian
Keywords:neplačilo, klasifikacija, logistična regresija, nevronske mreže, zbirni podatki, celostni pogled na komitenta
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-164582 This link opens in a new window
COBISS.SI-ID:217838595 This link opens in a new window
Publication date in RUL:04.11.2024
Views:608
Downloads:323
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of commercial bank customers and prediction of their transition into default
Abstract:
Primary objective of this master’s thesis is to develop and evaluate a model that can be used to provide a selected commercial bank with an early prediction (e.g. about a month in advance) that a particular customer will default. In this way, the bank can be prepared to intervene or find solutions for the customer and adjust the repayment of its liabilities when the transition is predicted. Instead of focusing on the individual credit and its risk (which is more common in practice), in this master's thesis we focus on holistic view of the customer at the bank, as it is the customer who defaults, not his individual credit. For the purposes of our analysis, we therefore spend a considerable amount of time on data preparation, with the most important steps being the rearrangement of the panel data into a pooled cross-sectional form and the choice of modelling time. For each customer, in addition to information on his/her credit, we use information on the balance of his/her bank accounts and selected demographic variables that the commercial bank has in its possession and has allowed to be used. On the basis of the data thus produced, we have developed a classification model (based on logistic regression or neural networks) which treats each customer as a unit and predicts, for a selected time interval in the future (e.g. one, two or three months), the probability of the customer defaulting or not defaulting. When comparing the results of the two models, the neural network model performs better, but is much less reliable than the logistic regression. The reason for the lower reliability is because neural network model recognises very different patterns in the data when it is trained repeatedly on the same data, which makes it difficult to trust its result.

Keywords:default, classification, logistic regression, neural network, pooled cross-sectional data, client-holistic view

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back