izpis_h1_title_alt

Implementacija transformer modela globokega učenja in meta učenja za identifikacijo vrste in resnosti napak na ležajih
ID Pogačnik, Filip (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,97 MB)
MD5: BE811F83679BF9DE77B5C1A25ACD98A5

Abstract
V zadnjih nekaj letih se z razvojem umetne inteligence in globokega učenja pojavlja vedno več različnih metod, s katerimi lahko rešujemo prej težko rešljive probleme. Ena izmed takih metod je tudi kombinacija meta-učenja in transformer modela, ki smo jo uporabili v našem zaključnem delu. Slednja namreč omogoča hitro in efektivno učenje modelov z uporabo majhnega števila vhodnih podatkov. V našem primeru smo želeli napovedati več različnih vrst in resnosti napak na ležajih glede na majhno število predhodno izvedenih meritev. S pomočjo uporabe Python-ove knjižnice PyTorch ter upoštevanjem ustrezne zgradbe transformer modela in postopka meta-učenja, smo uspeli doseči zadovoljivo končno natančnost. Naučeni modeli so torej prek uteženega glasovanja z dobro natančnostjo znali napovedati, katero vrsto napake na ležaju predstavlja vhodna meritev ter tudi njeno resnost. Uspešnost izvedenih napovedi smo tudi stestirali na meritvah pripravljenih izključno za testiranje modela ter jo vizualno prikazali v obliki matrike zamenjav.

Language:Slovenian
Keywords:globoko učenje, transformer model, meta-učenje, ležaji, identifikacija napak, PyTorch
Work type:Master's thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2024
PID:20.500.12556/RUL-164431 This link opens in a new window
Publication date in RUL:25.10.2024
Views:105
Downloads:33
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of a deep learning transformer model and meta learning to identify the type and severity of bearing defects
Abstract:
In the last few years, with the development of artificial intelligence and deep learning, there is an increasing number of different methods that can be used to solve previously difficult problems. One such method is the combination of meta-learning and transformer model, which we used in our final thesis. The latter enables fast and effective learning of models using a small number of input data. In our case, we wanted to predict several different types and severity of bearing defects based on a small number of previously performed measurements. By using the Python library PyTorch and taking into account the appropriate structure of the transformer model and the meta-learning process, we managed to achieve a satisfactory final accuracy. Through weighted voting, the learned models were able to predict with good accuracy which type of bearing defect the input measurement represents and also its severity. The performance of the predictions was also tested on measurements prepared exclusively for model testing and visually displayed in the form of a confusion matrix.

Keywords:deep learning, transformer model, meta-learning, bearings, fault identification, PyTorch

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back